

SiO₂ applications as an alternative to insect control in greenhouses

Sofia Faliagka, Rafailia Germani, Paraskevi Agrafioti, Panagiotis Xidas, Christos G. Athanassiou, Nikolaos Katsoulas*

*Correspondence: <u>nkatsoul@uth.gr</u>

European Regio

Development Fund

HELLENC REPUBLIC MINISTRY OF ECONOMY & DEVELOPMENT SPECIAL SECRETARY FOR REDF & CP MANAGENG AUTHORITY OF EPAREK

The integration of silicon dioxide (SiO₂) in agriculture

✓ Eco-friendly, non-toxic substance

- ✓ Alternative method to chemical applications in agriculture
- ✓ Mode of SiO₂ action: adherence and friction of its nanoparticles on the insect's exoskeleton
- ✓ Result: water loss, dehydration and insect mortality

HELLENIC REPUBLIC MINISTRY OF ECONOMY & DEVELOPMENT SPECIAL SECRETARY FOR ERDF & C MANAGING AUTHORITY OF EPANE

The integration of silicon dioxide (SiO₂) on the insect-proof screens' surface

 ✓ Active protection of greenhouse crops from pest invasions due to a special SiO₂ coating

✓ Ventilation and greenhouse microclimate optimization, as the efficacy of SiO₂ could promote the use of lower mesh size screens

✓ Food sustainability without chemical residues

The aim of the study

✓ The evaluation of different SiO₂ formulations against tolerant stored-product insects

✓ The evaluation of different SiO₂ – coated screens against tolerant stored-product insects

✓ The further installation of the screens into greenhouse vent openings

HELLENIC REPUBLIC MINISTRY OF ECONOMY & DEVELOPMENT SPECIAL SECRETARY FOR ERDF & C MANAGOING AUTHORITY OF EPARDE

European Regiona Development Fun

Materials and Methods

Lab experiments with silica nanoparticles

2 target species

- ✓ Sitophilus oryzae adults
- Tribolium confusum larvae

3 silica formulations

✓ S200
✓ S200 – OH
✓ S200 – MEC

Materials and Methods

Lab experiments with silica nanoparticles

Assessment of the different formulations of **Silicon dioxide (SiO₂) nanoparticles** against:

- ✓ Sitophilus oryzae adults, and
- Tribolium confusum larvae

20 insects, 3 replications / treatment

Evaluation after 1 and 7 days of exposure

Materials and Methods

Lab experiments with silica coated screens

2 target species

✓ Sitophilus oryzae adults

Tribolium confusum larvae

_			
5	insect	-proof	screens

SiO ₂ -screens	Organic primer	SiO ₂ particle diameter (µm)	Coating repetition	SiO ₂ mass on the screen's surface (g m ⁻²)
S200-1	-	2-4	1	1.2
S200-3	-	2-4	3	1.7
S200-0-P	Paraffin	2-4	0	15.4
S200-1-P	Paraffin	2-4	1	2.1
S200-2-P	Paraffin	2-4	2	2.5

HELLENIC REPUBLIC MINISTRY OF ECONOMY & DEVELOPMENT SPECIAL SECRETARY FOR REDF & CF MANAGING AUTHORITY OF EPAREK

Materials and Methods Lab experiments with silica coated screens

Assessment of an insect-proof screen **coated with different SiO₂** against:

- ✓ Sitophilus oryzae adults, and
- Tribolium confusum larvae

Evaluation after 1, 3, 5 and 7 days after the exposure

Lab experiments with silica nanoparticles

Assessment of three formulations of Silicon dioxide (SiO₂) nanoparticles against S. oryzae

Lab experiments with silica nanoparticles

Assessment of three formulations of Silicon dioxide (SiO₂) nanoparticles against T.confusum

Results

Lab experiments with silica coated screens

Assessment of an insect-proof screen coated with different SiO₂ against S. oryzae

HELLENIC REPUBLIC MINISTRY OF ECONOMY & DEVELOPMENT SPECIAL SECRETARY FOR REDF & CT MANAGING AUTHORITY OF EPANEX

Results

Lab experiments with silica coated screens

Assessment of an insect-proof screen coated with different SiO₂ against T. confusum

Conclusions

* Lab experiments with silica nanoparticles

None of the tested stored-product insects were affected 1 day after the exposure
✓ S. oryzae → Maximum mortality (88%) after 7 days of exposure to all treatments
✓ T. confusum → Maximum mortality (32%) after 7 days of exposure to S200

Lab experiments with silica coated screens

✓ S. oryzae → Maximum mortality (up to 70%) after 7 days of exposure to all treatments except S200-1-P (47%)

✓ T. confusum → Mortality was less than 10% after 7 days of exposure to all treatments

✓ paraffin did not have a significant effect in insect mortality

HELLENIC REPUBLIC MINISTRY OF ECONOMY & DEVELOPMENT SPECIAL SECRETARY FOR REDF & CF MANAGING AUTHORITY OF FRANK

Conclusions

 SiO₂ nanoparticles are effective as an alternative biological insect control agent, as delayed mortality was promoted after 7 days of post-exposure to the treated screens

SiO₂ offers an innovative technological solution for sustainable agriculture,
preserving pest management, whilst minimizing the environmental footprint through
its non-toxic and pesticide-free basis

✓ Thus, the SiO_2 – coated screens could be efficiently incorporated in greenhouses as greenhouse pests are considered more susceptible as compared to stored-product

insects

HELLENIC REPUBLIC MINISTRY OF ECONOMY & DEVELOPMENT SPECIAL SECRETARY FOR REOF & C MANAGING AUTHORITY OF EPADE

Thank you for your attention

Acknowledgments

This research has been co-financed by the European Union and Greek national funds through the National Action "Bilateral and Multilateral E&T Cooperation Greece - Germany" (project code: T2DGE-0120).

European Regiona

Development Fund

HELLENIC REPUBLIC Ministry of Education, Research and Religious Affairs

HELLENIC REPUBLIC MINISTRY OF ECONOMY & DEVELOPMENT SPECIAL SECRETARY FOR ERDF & CF MANAGING AUTHORITY OF EPANEX

