

ASSESSMENT OF THE FALL DORMANCY OF LUCERNE (Medicago sativa L.) IN THE MEDITERRANEAN AREA

Benedetto Frangipane¹, Mauro Vaccarella¹, Vincenzo Emanuele Angileri¹, Alessandro Miceli², Claudia Miceli¹

¹ Council for Agricultural Research and Economics, Plant Protection and Certification Centre, Italy

² Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Italy

benedetto.frangipane@crea.gov.it

Introduction

The difficulties in assessing the distinctness characters in lucerne plants have recently led to reject the registration to the EU database of plant varieties for several new varieties with valuable agronomic characteristics [1]. The tendency of lucerne plants to grow during winter and their fall dormancy (FD) could be an efficient tool for discriminating varieties during registration tests and an interesting agronomic characteristic to evaluate cultivar suitability to different climatic conditions [2]. The information about the dormancy of lucerne are limited and the dormancy class of many Italian varieties is still unknown.

Aim of the Research

The aim of our study was to validate under Mediterranean climate the method proposed by the International Union for the Protection of New Varieties of Plants (UPOV) for the assessment of the dormancy class and to classify an adequate number of Italian cultivars to be used as control varieties in future registration tests.

Materials & Methods

The experiment was carried out at the experimental farm of CREA-DC located in Palermo, Italy (38.08° N, 13.42° E; 34 m a.s.l), during three consecutive Distinctness, Uniformity and Stability (DUS) trials (18 months each; 2016-2019).

Figure 1. Visual assessment of different Fall Dormancy Class

Seven varieties, representing the fall dormancy classes (FDC) 2, 4, 5, 6, 7, and 9, were used as control varieties, while other twenty-one varieties under DUS testing were evaluated to assess their dormancy class. Natural plant heights (NPHs) was measured during the different DUS trials according to UPOV guidelines in five growth stages: 2 weeks after the first autumn equinox following sowing (NPH₂); 6 weeks after the first autumn equinox following sowing (NPH₃); about 1 month after the beginning of growing the year after sowing (NPH₄); 2 weeks after the second autumn equinox following sowing (NPH₁₄); 6 weeks after the second autumn equinox following sowing (NPH₁₅). A cut was made 2 weeks before and 2 weeks after each autumn equinox.

The NPH values measured for control varieties were used to evaluate the FDC by applying the models proposed by Montegano [3] and Teuber [4]. The first method uses regression analysis to fit a linear equation to the PC1 values obtained from a Principal Component Analysis (PCA) performed on NPHs. Thus, a PCA was performed for each DUS trial, investigating the correlation among the varieties and the natural plant height at different growth stages. The input matrix for the analysis comprised the NPH values of the control varieties. Regression analyses were then performed to fit a linear equation to the data of PC1 from the PCA of each DUS trial [3]. Moreover, regression analyses were also performed to fit a linear equation to the data of each NPH [4]. The linear regression models obtained from the single NPH measurements over the three DUS trials were compared to find the equation with the highest correlation. The equations obtained were then used to estimate the dormancy rating of the varieties under DUS testing that was compared to the dormancy assessed visually by using the control varieties as references.

able 1. Linear 1	regression	models	obtained	using NPI	H values
------------------	------------	--------	----------	-----------	----------

DUS Trial	NPH _n	Model	r	\mathbf{R}^2	Pr > F
2016 - 2017	NPH ₂	FDC=1.4616*NPH ₂ -6.2439	0.16	0.02	0.738
	NPH ₃	FDC=5.968*NPH ₃ -37.606	0.46	0.22	0.295
	NPH_4	FDC=3.1414*NPH ₄ -11.053	0.99	0.99	< 0.0001
	NPH ₁₄	FDC=6.3167*NPH ₁₄ -45.849	0.63	0.40	0.128
	NPH ₁₅	FDC= 6.1215*NPH ₁₅ -34.403	0.85	0.72	0.015
2017 - 2018	NPH ₂	FDC=-1.3607*NPH ₂ +15.168	-0.21	0.05	0.644
	NPH ₃	FDC=7.7577*NPH ₃ -45.271	0.85	0.72	0.016
	NPH_4	FDC=4.0021*NPH ₄ -20.389	0.94	0.88	0.002
	NPH ₁₄	FDC=12.364*NPH ₁₄ -85.999	0.73	0.53	0.064
	NPH ₁₅	FDC=7.0959*NPH ₁₅ -38.689	0.97	0.94	0.000
2018 - 2019	NPH ₂	FDC=-0.3903*NPH ₂ +8.3198	-0.06	0.00	0.905
	NPH ₃	FDC=5.2886*NPH ₃ -32.3865	0.74	0.54	0.059
	NPH_4	FDC=2.9213*NPH ₄ -9.6057	0.90	0.82	0.005
	NPH ₁₄	FDC=4.3468*NPH ₁₄ -31.763	0.48	0.23	0.273
	NPH ₁₅	FDC=7.2351*NPH ₁₅ -47.19	0.91	0.83	0.004

Table 2. Estimated FDC classes of the control varieties using the models with PC1,	
NPH ₄ and NPH ₁₅	

		DUS trial 2016 - 2017			DUS trial 2017 - 2018			DUS trial 2018 - 2019		
Control Varieties	Official	Estimated FDC		Estimated FDC			Estimated FDC			
	FDC	PC1	(NPH ₄)	(NPH ₁₅)	PC1	(NPH ₄)	(NPH ₁₅)	PC1	(NPH ₄)	(NPH ₁₅)
PROSEMENTI	2	2.2	1.9	2.5	2.1	2.5	2.9	1.7	1.1	3.5
ALBARELLA	4	3.7	3.6	3.5	4.0	3.9	4.5	3.7	5.1	2.9
LEGEND	4	4.3	4.4	5.0	3.9	4.0	3.2	4.6	5.3	4.8
DONZELLA	5	5.0	5.1	4.5	5.8	6.4	4.4	5.6	5.3	5.2
BUTTERO	6	5.4	6.1	7.1	5.9	5.5	5.8	6.1	6.2	5.1
SUTTER	7	7.5	7.2	7.7	6.3	5.8	7.1	6.5	6.2	6.5
MEDINA	9	8.8	8.7	6.7	9.1	9.1	9.1	8.8	7.9	9.2

FDC

Varieties

VALLEVERDE

SIRIVER MK II

E109

E106

E110

E97

E107

ISIDE

EM95

GIULIA

Group

5 Intermediate

Intermediate

Intermediate

Intermediate

Intermediate

Intermediate

Intermediate

Intermediate

Non-dormant

9 Non-dormant

Table 3. Estimated FDC classes of the varieties under DUS testing

Group

1 Dormant

1 Dormant

1 Dormant

2 Dormant

2 Dormant

4 Intermediate

4 Intermediate

4 Intermediate

4 Intermediate

4 Intermediate

5 Intermediate

FDC

Varieties

E113

Figure 2. Principal component analysis and linear regression models of the three DUS trials

Results

The biplots obtained from the PCA related to each DUS trial showed that NPH₄ and NPH₁₅ were positively correlated with PC1, while NPH₂ was mainly correlated with PC2.

In each DUS trial, three main groups could be distinguished based on the fall dormancy class of the control varieties: Dormant (FDC 1-3), Intermediate (FDC 4-6) and Non-Dormant (FDC>6) (Figure 2).

The PC1 and the fall dormancy class had a significant linear relationship in all the years of the trial (Figure 2). These models showed R² values of 0.97 in the first DUS trial and 0.96 in the second and third trial. As regards the models obtained from the regression analyses between the FDC of control varieties and each NPH a high and significant correlation with FDC (R² values higher than 0.72) was found using NPH₄ and NPH₁₅ (Table 1).

Table 2 shows the estimated FDC classes of the control varieties calculated from the models with PC1, NPH₄ and NPH₁₅. The linear regression models obtained using PC1 fitted better, showing lower differences between estimated

Conclusions

The results of this study allowed: (I) the validation of the method proposed by UPOV guidelines to our environmental conditions; II) the selection of a fair number of control varieties to be used in future official DUS tests.

Our study confirmed that the dormancy rating obtained through the NPHs is an important characteristic for the discrimination of lucerne varieties. The models obtained from PC1, NPH₄ and NPH₁₅ explained a high proportion of variability. In our climatic conditions, high temperatures occurring in early autumn don't allow discrimination among the varieties by using NPH₂. Therefore, the NPH2 measure could be avoided, reducing the costs of DUS tests of lucerne.

In conclusion, the results of this work could help to simplify the assessment of variety dormancy ratings.

References

2. Ventroni, L.M.; Volenec, J.J.; Cangiano, C.C. Fall dormancy and cutting frequency impact on alfalfa yield and yield components, Field

classes and official FDC of the control varieties (Table 2).

This model (FDC=a*PC1+b) was then used to estimate the FDC of the 21

varieties under DUS testing and the results are presented in Table 3.

Crops Research **2010**, 119, 252–259. doi:10.1016/j.fcr.2010.07.015;

3. Montegano, B.; Gensollen, V.; Lassalvy, S. Fall dormancy as a descriptor of Lucerne (Medicago sativa L.) varieties, 2002. 19th General meeting of the European Grassland Federation. La Rochelle, France, 7, 452-453; 4. Teuber, L. R.; Taggard, K. L.; Gibbs, L. K.; Mccaslin, M. H.; Peterson, M. A.; Barnes, D. K. 1998. "Fall Dormancy. In Standard tests to characterize alfalfa cultivars". 3rd ed. (amended 1998). North American Alfalfa Improvement Conference, Beltsville, MD. (Available online at http://www.naaic.org/stdtests/Dormancy2.html) (Verified July 11, 2003).

^{1.} Annicchiarico, P.; Nazzicari, N.; Ananta, A.; Carelli, M.; Wei. Y.; Brummer, E.C. Assessment of Cultivar Distinctness in Alfalfa: A Comparison of Genotyping-by-Sequencing, Simple-Sequence Repeat Marker, and Morphophysiological Observations, Plant Genome 2016, 9(2), 1-12. doi:10.3835/plantgenome2015.10.0105. PMID: 27898838;