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1. Introduction
There are three compulsory ultrasound test during
pregnancy in France. Some classical measures are
done for every women, e.g the research of trisomy
21 is well known and mastered. On the contrary
there is no strict protocol defined for the research of
rare diseases. We want to help obstetricians to im-
prove ultrasonic diagnostic.

2. Available Data
We have a list of 80 rare diseases. Each disease has
a list of associated symptoms (typical symptoms).
Our database references 220 different symptoms.
We write:

Bi =
{

1 if the fetus has the symptom of type i
0 otherwise .

We denote the diseases: D ∈ {d1, ..., dk}. We know
P[D = dj ] as well as P[Bi = 1 | D = dj ] for all
the symptoms Bi typical of D. We do not know the
joint distribution but only the marginals.

3. Markov Decision Process.

• State: What we know at the current time
about the symptoms of the patient.
s = (s(i))220

i=1 ∈ S, s(i) = 1 if symptoms i is
present, 0 if absent, 2 if non observed yet.
• Action: The next symptom we suggest at the

obstetrician to look at. a ∈ A
• Policy: π : S→ A

We aim to learn

π∗ = arg min
π

EP
[
I
∣∣s0, π

]
, (1)

where s0 = (2, ..., 2) is the initial state, P the law
of the environment currently used and I is the ran-
dom number of inquiries before reaching a terminal
states, i.e:

I = inf{t | H(D | St) ≤ ε}

where H(D | St) =
∑
st
P[St = st]H(D | St =

st) is the entropy of the random variable disease D
given what we know at time t: St. st is a realization
of the r.v St.
We are ensured that H(D | St+1) ≤ H(D | St).
When we consider that entropy is sufficiently low
and that we can stop and propose a diagnosis, we
know that on average, the uncertainty about the pa-
tient’s disease would not have increased if we had
continued checking symptoms.

4. Planning algorithms
• A policy-based approach: πθ(s, a) = eθ

Tφ(s,a)/∑
b e
θTφ(s,b) where πθ(s, a) is the probability to

take action a in state s, φ(s, a) is a feature vector: a set of measures linked with the interest of taking
action a when we are in state s.

• A value-based approach: the objective is to learn the Q-values, the expected reward when taking
action a in s:

Qπ(s, a) = E

[
I∑

t′=t
rt′ | st = s, at = a, π

]
which are parameterized, for example by a neural network,Qπ(s, a) ≈ Qw(s, a). These parameters w
are learned through a Deep Q-Network (DQN) algorithm where the classic temporal difference update
is switched by a Monte-Carlo (MC) update which exhibits better performance on our problem.

5. High-dimensional issues
A DQN algorithm is not tractable for the main task (1).
We then created 220 tasks Ti to solve, ∀i, s(i) = (2, ..., 2, 1, 2, ..., 2):

π∗(i) = arg max
π

EP
[
I | s(i), π

]
. (Ti)

Some of the tasks Ti are sufficiently low-dimensional to be solved using dynamic programming. For the others
tasks we use a DQN algorithm. Playing games from the start to a terminal state (MC update) may be time-
consuming and returns will suffer from a high variance. The key idea is to note that the different tasks have
intersections, we then play games from the start state s(i) to a state where we already learned how to play and
bootstrap.

6. Learning a model of the environment
How to mix experts and data ? We define our estimator as the distribution closest to the initial a priori compa-
tible with the data: p̂Lεn

= arg min
p∈C/L(pemp

n ,p)≤εn

L(pmaxent, p) (2)

where εn := εδn = arg minl P[L(pemp
n , p?) ≤ l] ≥ 1− δ.

Notations: L a given dissimilarity measure. pemp
n the empirical distribution. pmaxent the initial a priori given by

experts. p? the true distribution we aim to estimate.

Theorem 1. Let p̂1,1
n (resp p̂Ln ) be p̂Lεn

in the case where L is the L1 norm (resp. the KL divergence) then we
have with probability at least 1− δ:

‖p? − p̂1,1
n ‖1 ≤ 2 min{εn, ‖p? − pmaxent‖1} (3)

and KL(p̂Ln ||p?) ≤ min {KL(pmaxent||p?), εn (Ln + 1)} (4)

where Ln = KL(pmaxent||p?)−KL(pemp
n ||p

?)
KL(pemp

n ||pmaxent) .
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