Gauge Freedom of Entropies on $q$-Gaussian Distributions

Hiroshi Matsuzoe

Nagoya Institute of Technology, Nagoya, Japan
Published: 5 May 2021

This is a joint work with Asuka Takatsu at Tokyo Metropolitan University.

A $q$-Gaussian distribution is a generalization of an ordinary Gaussian distribution. The set of all $q$-Gaussian distributions admits information geometric structures such as an entropy, a divergence and a Fisher metric via escort expectations. The ordinary expectation of a random variable is the integral of the random variable with respect to its probability distribution. Escort expectations admit us to replace the law to any other distributions. A choice of escort expectations on the set of all $q$-Gaussian distributions determines an entropy and a divergence. The $q$-escort expectation is one of most important expectations since this determines the Tsallis entropy and the alpha-divergence.

The phenomenon gauge freedom of entropies is that different escort expectations determine the same entropy, but different divergences.

In this talk, we first introduce a refinement of the $q$-logarithmic function. Then we demonstrate the phenomenon on an open set of all $q$-Gaussian distributions by using the refined $q$-logarithmic functions. We write down the corresponding Riemannian metric.

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).