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OUTLINE

• A kinetic model is proposed to simulate a pedestrian flow in a 1D, two-way evacuation

situation where a dense outward passive flow encounters a scarse, yet aggressive,

countercurrent.

• Pedestrians walking in opposite directions are considered as two distinct species, resulting in

a set of two kinetic (Boltzmann-like) coupled equations.

• Frontal interactions with no passing, in which one individual changes direction are considered

reactions.

• Two scenarios are addressed within a two-moment approach, depending on the relative

aggressiveness of the species and the density of the passive crowd.

• A three moment model is in progress, where a viscous-type effect enters the stabilization

process.

KINETIC MODEL

Two kinetic equations are established, featuring a force term arising from the aggressiveness

(desire to attain a higher speed wi (x,vi, t) in a characteristic time τi):

D fi ≡
∂ fi

∂t
+ vi

∂ fi

∂x
+

∂

∂vi

(

wi (x,vi, t)− vi

τi

fi

)

=
2

∑
j=1

Ii j, for i = 1,2.

Here i = 1 species moves to the right and i = 2 to the left.

The interaction model is based on the following hypotheses:

1. Only binary interactions are considered in two modalities: direct (same species ”catch up”)

and cross, or frontal, interactions (different species ”face to face”).

2. Overtaking (direct) or passing (cross) is allowed with a probability p, which depends on the

local density.

3. In overtaking or passing, both pedestrians continue with their velocities prior to the encounter.

4. When overtaking is not possible, the individual reaching from behind adapts to the slower

speed.

5. In a frontal encounter we define a probability ri j that dictates which individual changes

direction, and thus acquires the other’s speed.

The proposed general structure for the interaction terms is:
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for i = 1,2, (1.1)

such that (1− p)Γ
(+/−)
i j dxdvidt stands for the total number of pedestrians added/subtracted from

the set [x,x+dx]× [vi,vi+dvi] as a consequence of the interactions between both type of walkers

in a time no longer that dt.

INTERACTION MODEL

Direct interactions

• Gain term Γ+
ii :

- Select one specific non-primed walker with velocity vi.

- The individuals approaching it from behind with |v′i|> |vi|, will reach the one in the front in

a given time interval dt. - The primed (faster) pedestrians will slow down, which leads to a

gain in the phase space cell corresponding to vi.

- The number of these interactions in a time interval dt is the product of the number of points

in the given cell, fidvidx, and the one in an 1D cylinder of height |v′i− vi|, that is

Γ
(+)
ii dxdvidt = dxdvidt fi

∫
|v′i|>|vi|

dv′i f ′i |v′i− vi| . (2.1)

• Loss term Γ−
ii :

- Focus on the slower (primed) individuals in the front, with velocities |v′i|< |vi|.
- The speed reduction of the unprimed walker leads to a loss in the cell vi.

Γ
(−)
ii dxdvidt = dxdvidt fi

∫
|v′i|<|vi|

dv′i f ′i |vi− v′i| . (2.2)

Cross interactions

Define ri j as the probability that the individual of class i changes direction and acquires speed v j.

• Gain term Γ
(+)
i j (probability r ji):

Γ
(+)
i j dxdvidt = (1− ri j)dxdvidt fi

∫
D j

dv j f j |vi− v j| , (2.3)

• Loss term Γ
(−)
i j (probability ri j):

Γ
(−)
i j dxdvidt = ri jdxdvidt fi

∫
D j

dv j f j |vi− v j| . (2.4)

where D j is the domain of f j (D1 = [0,∞), D2 = (−∞,0]).

KINETIC EQUATIONS

D f1 = (1− p)
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, (3.1)

D f2 = (1− p)
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∫ ∞
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, (3.2)

TWO MOMENT MODEL FOR HASTY WALKERS

• The two moment model considers the evolution of densities (ρi) and flow velocities (ui):

ρi =
∫

Di

fidvi, ρiui =
∫

Di

vi fidvi, (4.1)

• In the hasty walkers model one assumes wi = ωivi and defines an aggressivness parameter ai:

ai =
(ωi−1)

τi

From Eqs. (3.1-3.2) one obtains (here ∆u = u1−u2 > 0 and R = r21− r12):
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The velocity variance ρiθi =
∫

Di
(vi−ui)

2
fidvi will close the system within some adequate

assumption (see below).

ADDITIONAL ASSUMPTIONS

• The passing probability is here defined as p = 1 − ρ
ρM

, where ρ = ρ1 + ρ2 and ρM is the

maximum density for the system.

• For ri j we propose

ri j = 1− aiρi

a1ρ1+a2ρ2

. (4.4)

such that the relevant quantity for deciding which individual turns around is local density times

agressiveness.

• For the closure of the system we propose θi to be given by the solution for the distribution

functions fi corresponding to an homogeneous and stationary situation, where it is assumed

that cross interactions are scarce. Under these assumptions, one obtains (see Ref.[1]) θi =
u2

i /αi where

αi =±(1− p)
ρs

iu
s
i

a
. (4.5)

and s stands for the stationary and homogeneous state.

RESULTS FOR AN EVACUATION SCENARIO

• In order to examine the response of the system to small perturbations, a stability analysis is

carried out. We write the perturbed variables as Xi = X̄i+δXi where δXi is a small fluctuation

• The 0th order system has solutions: ρ̄i = ūi = 0, ū1 = ū2 = 0, and
ρ̄2

ρ̄1
= a1

a2
.

• If the evacuation route is to the right we have ρ̄2 ≪ ρ̄1 and a1 ≪ a2 (see the first bullet of the

OUTLINE). Thus, in this scenario we consider is
ρ̄2

ρ̄1
= a1

a2
.

• For simplicity, we describe the flow from the comoving frame of the exiting crowd (ū1 = 0).

Considering
a1
a2
= µ ≪ 1

At least one root of the dispersion relation (both in zeroth and first order in mu) for the linearized

system lies on the right hand side of the complex plane, resulting in an instability.This translates

in an unavoidable congestion in this scenario.

Considering ρ̄2 = ν ≪ 1

In this case, to lowest order in ν one obtains oscillating (stable) modes. To first order in nu one

can observe three different scenarios depending the ratio of aggressiveness and the magnitude of

ρ2
1ū2 (relative to u1):

1. If a1 < a2 ≤
√

3a1 the system is unstable. However we require a2 ≫ a1 and thus this scenario

is irrelevant. 2. If a2 > 3a1, the system is stable only if

ρ̄2
1ū2 < 4a2ν4 3ν2−1

(4ν2+ν−1)2
(6.1)

CONCLUSIONS AND FINAL REMARKS

• A model for bidirectional pedestrian flow in a corridor has been established based on kinetic

theory. This model could be useful for evacuation planning.

• The system has been linearly analyzed within a two moment approach considering a closure

obtained form the stationary homogeneous state with negligible front encounters.

• Two scenarios have been explored. A congestion was found to be unavoidable for a small ratio

of agressiveness. In the case of such ratio being only small when compared with the density of

the outgoing flow, a stable flow is attainable as long as the relative velocity of both velocities

is small enough.

• A viscous term in the transport equations, which appears with a more realistic closure for θi,

will lead to stabilization depending on the wavenumber of the perturbations. This is work in

progress and will be reported elsewhere.
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