Abstract

Efficiency of an Arrangement in Series of Irreversible Thermal Engines Working at Maximum Power †

Luis Eduardo Vidal-Miranda 1, Juan Carlos Chimal-Eguía 2, Juan Carlos Pacheco-Paez 3,4 and Ricardo Teodoro Páez-Hernández 4

1 Universidad Autónoma Metropolitana, Unidad Azcapotzalco. A. San Pablo 180, Col. Reynosa, Ciudad de México, Mexico
2 Centro de Investigación en Computación del Instituto Politécnico Nacional, Av. Miguel Othón de Mendizábal s/n. Col. La Escalera, Ciudad de México, Mexico
3 Department of Applied Mathematics and Computing, Faculty of Higher Studies, Division of Mathematics in Engineering, UNAM, Mexico
4 Área de Física de Procesos Irreversibles, Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana, Unidad Azcapotzalco. A. San Pablo 180, Col. Reynosa, Ciudad de México, Mexico
Published: 5 May 2021

Within the context of finite-time thermodynamics several regimes of performance have been used to study the well known Curzon-Ahlborn (CA) heat engine model [1–5]. Also the optimal performance and the effects on environment are studied to find the best approximation with real heat engines.

In this work we present a model of an arrangement in series of irreversible Carnot heat engines, which consist of k reservoirs connected in series, this heat engine model is working under three different regime of performance: maximum power output, maximum ecological function [6] and maximum efficient power [7]. At first we used three reservoirs, and we calculated its efficiency. For the case of maximum power output we calculated the efficiency for the case of the generalizing of k reservoirs, and we get an efficiency expression similar to the one of Curzon-Ahlborn, the irreversibilities are taken into account by irreversibility parameter R. Finally we present the comparison of the efficiencies obtained under three different regimes of performance.

References


© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).