On the Implementation of Downsampling Permutation Entropy variants in the detection of Bearing Faults in Rotatory Machines Antonio DÁVALOS-TREVIÑO Meryem JABLOUN Philippe RAVIER Olivier BUTTELLI

Mathématiques, Informatique, Physique, Théorique et Ingénierie des Systèmes [MIPTIS] Doctoral School

PRISME Laboratory, University of Orléans, Fr.

MPE - Background

- Multiscale Permutation Entropy (MPE) of dimension *d* analyzes the information contained in the ordinal patterns of a signal at different time scales. (Aziz & Arif., 2005).
- Refinements to this method, like rcMPE (Humeau-Heutier 2015), greatly improve the precision of MPE, particularly for short time signals.
- Our contribution: First, we propose an alternative multiscaling method, using composite downsampling instead of composite coarse-graining, which further improves the method's precision.
- Motivation: Composite multiscaling creates artifact correlations within the signal, which increases the MPE variance. By downsampling, we avoid the unwanted effects of preprocessing in the final MPE value.

Contents

Theoretical Background

Permutation Entropy and Multiscaling techniques

Refined Composite Downsampling Permutation Entropy

Composite Downsampling and Statistics comparison

Results

2

3

Experimental Setup, Results and Discussion

Theoretical Background

4

Multiscale Permutation Entropy

Bandt & Pompe, 2002

*

Aziz & Arif, 2005. Costa et al. 2002

Refined Composite Multiscale Permutation Entropy

- For k = 1, ..., m, we can construct m different coarse signals by starting the classical coarsegraining procedure at element k. (Humeau-Heurtier et al. 2015)
- Improved Precision
- Artifact Cross-Correlation
 - $\begin{array}{l} \circ \quad x_{k=1,1}^{(m=3)} = \frac{1}{m}(x_1 + x_2 + x_3) \\ \circ \quad x_{k=2,1}^{(m=3)} = \frac{1}{m}(x_2 + x_3 + x_4) \end{array}$

Multiscale Permutation Entropy Characteristics

Ordinal	Robust
Patterns are invariant to	Robust to signal's noise
signal's amplitude.	and artifacts.
Length Constraint The precision of the pattern probability estimations decrease for short signals.	Artifact Cross- Correlation For composite approaches, the use of redundant terms leads to MPE underestimation.

Refined Composite Downsampling Permutation Entropy

Composite Downsampling and Statistics comparison

Composite Downsampling

- We combine the classical downsampling procedure with the multiscaling.
- Build downsampled signals with different starting point.
- Retains improved precision from Composite Coarse-graining.
- Avoids Artifact Crosscorrelation.

$$H_{rcd}(\widehat{p}^{(\tau)}) = \sum_{i=1}^{d!} \widehat{p}_i^{(\tau)} \log(\widehat{p}_i^{(\tau)})$$

Davalos et al., 2020.

Embedding dimension *d*, time scale *m*, signal length *N*, and probability *p*.

Main Findings	Artifact Cross- correlation Limits the refined composite precision	Downsampling Avoids redundancy by using composite downsampling instead of coarse-graining	
	Variance rcDPE presents the lowest variance of all the methods discussed so far. It outperforms classic MPE by two orders of magnitude on white noise.	Scale-invariant rcDPE is the only method here discussed with no effects related to scale.	

Results

Experimental Setup, Results, and Discussion.

Experimental Setup

Dataset

- Bearing fault signal dataset (Bechhoeffer 2013).
- Sampling frequency 100kHz for 6 seconds.
- Bearing test rig with 270 lb load.
- Rotation frequency 25 Hz.
- 3 signals with labels:
 - Base: no defects.
 - Fault: with defects

Methods

- 3-way ANOVA test.
- Factors:
 - Type: Base and Fault
 - Methods: MPE, rcMPE, rcDPE, and rcDPE (filtered)

•
$$d = 3, ..., 6$$

• $m = 1, \dots, 20$, with $\tau = m$.

	Df	Sum Sq.	Mean Sq.	F-value	P-Value	Significant
Туре	1	0.0000358	0.0000358	12.346	0.000730	***
Method	3	0.0007515	0.0002505	86.392	< 2e-16	***
Dimension	1	0.0004970	0.0004970	171.397	< 2e-16	***
Type & Method	3	0.0003514	0.0001171	40.398	5.37e-16	***
Type & Dimension	1	0.0000410	0.0000410	14.134	0.000322	***
Method & Dimension	3	0.0000955	0.0000318	10.981	4.09e-06	***
Type & Method & Dimension	3	0.0000219	0.0000073	2.514	0.064282	
Residuals	80	0.0002320	0.0000029			

ALL FACTORS AND INTERACTIONS ARE SIGNIFICANT

Significance $\alpha = 0,05$

Main Findings	Optimal Settings rcDPE with aliasing filter Time scale m=4 Low dimension (d=3)	MPE behavior Unfiltered rcDPE has the lowest variation, but erases the difference between faulty and non- faulty signals.	
	MPE dimension For this particular dataset, higher dimensions actually perform worse than lower dimensions. Filtered rcDPE maintains significant differences.	Aliasing There is a trade-off between statistical precision and aliasing effects.	

Conclusions

Main Insights

Conclusion

- The refined Composite Downsampling Permutation Entropy improves the precision of the classical rcMPE by avoiding the artifact cross-correlations, product of the signal's preprocessing.
- rcDPE enhances the classification between faulty and non-faulty bearings in rotatory machines.
- In order to avoid aliasing effects, we applied an anti-aliasing filter matching the Nyquist frequency for each time scale. This allowed a better classification, even with increased variance compared to the unfiltered rcDPE method.
- For this dataset, lower dimensions allowed a better classification of the faulty components. Nonetheless, the filtered rcDPE method successfully detected the difference, even for higher dimensions.

Thank you!

Q&A Session