
On the Implementation of 
Downsampling Permutation 

Entropy variants in the 
detection of Bearing Faults

in Rotatory Machines

Antonio DÁVALOS-TREVIÑO

Mathématiques, Informatique, 
Physique, Théorique et Ingénierie des 
Systèmes [MIPTIS] Doctoral School

PRISME Laboratory,
University of Orléans, Fr.

Meryem JABLOUN

Philippe RAVIER

Olivier BUTTELLI



MPE - Background

• Multiscale Permutation Entropy (MPE) of dimension 𝑑
analyzes the information contained in the ordinal
patterns of a signal at different time scales. (Aziz &
Arif., 2005).

• Refinements to this method, like rcMPE (Humeau-
Heutier 2015), greatly improve the precision of MPE,
particularly for short time signals.

• Our contribution: First, we propose an alternative
multiscaling method, using composite downsampling
instead of composite coarse-graining, which further
improves the method’s precision.

• Motivation: Composite multiscaling creates artifact
correlations within the signal, which increases the
MPE variance. By downsampling, we avoid the
unwanted effects of preprocessing in the final MPE
value.
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Theoretical Background

Multiscale Permutation Entropy
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Permutation Entropy
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Multiscale Permutation Entropy

6

*

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

… … … … …Original 
Series

𝑥
( )

= �̅� , 𝑥
( )

= �̅� , 𝑥
( )

= �̅� , 𝑥
( )

= �̅� ,

… … … …
Scale 𝑚 
Series

𝒙 =

𝑥
⋮

𝑥
𝒙(𝒎) =

𝑥
( )

⋮

𝑥
( )

Multiscaling
Coarse-graining

procedure

Aziz & Arif, 2005. Costa et al. 2002



Refined Composite Multiscale Permutation Entropy

● For k = 1, … , 𝑚, we can construct 
m different coarse signals by 
starting the classical coarse-
graining procedure at element 𝑘. 
(Humeau-Heurtier et al. 2015)

● Improved Precision

● Artifact Cross-Correlation

○ 𝑥 ,  = 𝑥  +  𝑥  + 𝑥

○ 𝑥 ,  = (𝑥  +  𝑥  +  𝑥 )
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Ordinal
Patterns are invariant to 
signal’s amplitude.

Robust
Robust to signal’s noise 
and artifacts.

Length Constraint
The precision of the 
pattern probability 
estimations decrease for 
short signals.

Artifact Cross-
Correlation
For composite 
approaches, the use of 
redundant terms leads to 
MPE underestimation.
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Refined Composite 
Downsampling
Permutation Entropy

Composite Downsampling and
Statistics comparison
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Composite Downsampling

● We combine the classical 
downsampling procedure with 
the multiscaling.

● Build downsampled signals with 
different starting point.

● Retains improved precision from 
Composite Coarse-graining.

● Avoids Artifact Cross-
correlation.
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All methods
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MPE Expected Value – White Noise

Refined methods



All methods
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MPE Variance – White Noise

Refined methods



Artifact Cross-
correlation
Limits the refined 
composite precision

Downsampling
Avoids redundancy by 
using composite 
downsampling instead of 
coarse-graining

Variance
rcDPE presents the lowest 
variance of all the methods 
discussed so far. It 
outperforms classic MPE by 
two orders of magnitude 
on white noise.

Scale-invariant
rcDPE is the only method 
here discussed with no 
effects related to scale.
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Main Findings



Results
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Experimental Setup, Results, 
and Discussion.



Dataset

• Bearing fault signal dataset 
(Bechhoeffer 2013).

• Sampling frequency 100kHz for 
6 seconds.

• Bearing test rig with 270 lb load.
• Rotation frequency 25 Hz.
• 3 signals with labels:

• Base: no defects.
• Fault: with defects

Methods

• 3-way ANOVA test.
• Factors:

• Type: Base and Fault
• Methods: MPE, rcMPE, 

rcDPE, and rcDPE
(filtered)

• 𝑑 = 3, … , 6.
• 𝑚 = 1, … , 20, with 𝜏 = 𝑚.

Experimental Setup
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Sample Signal Spectrum
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* Dotted lines showcase the Nyquist frequency at each scale. For m>3, we experience aliasing.



MPE

18

Entropy Difference 𝐁𝐚𝐬𝐞 𝑭𝒂𝒖𝒍𝒕

rcMPE

Error bars computed using 𝑆 =  ±1,96 𝑆 , + 𝑆 ,  with significance 𝛼 = 0,05



rcDPE
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rcDPE – Aliasing Filter

Error bars computed using 𝑆 =  ±1,96 𝑆 , + 𝑆 ,  with significance 𝛼 = 0,05

Entropy Difference 𝐁𝐚𝐬𝐞 𝑭𝒂𝒖𝒍𝒕



ALL FACTORS AND 
INTERACTIONS ARE 
SIGNIFICANT
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Df Sum Sq. Mean Sq. F-value P-Value Significant

Type 1 0.0000358 0.0000358 12.346 0.000730 ***

Method 3 0.0007515 0.0002505 86.392 < 2e-16 ***

Dimension 1 0.0004970 0.0004970 171.397 < 2e-16 ***

Type &
Method

3 0.0003514 0.0001171 40.398 5.37e-16 ***

Type &
Dimension

1 0.0000410 0.0000410 14.134 0.000322 ***

Method &
Dimension

3 0.0000955 0.0000318 10.981 4.09e-06 ***

Type & 
Method &
Dimension

3 0.0000219 0.0000073 2.514 0.064282

Residuals 80 0.0002320 0.0000029

Significance 𝛼 = 0,05



d=3
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Base-Fault Classification

d=6

Significant with 𝛼 = 0,05 , m = 𝜏 = 4

*



Optimal Settings
rcDPE with aliasing filter
Time scale m=4
Low dimension (d=3)

MPE behavior
Unfiltered rcDPE has the 
lowest variation, but 
erases the difference 
between faulty and non-
faulty signals.

MPE dimension
For this particular dataset, 
higher dimensions actually 
perform worse than lower 
dimensions. Filtered rcDPE
maintains significant 
differences.

Aliasing
There is a trade-off 
between statistical 
precision and aliasing 
effects.
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Main Findings



Conclusions

Main Insights
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Conclusion

● The refined Composite Downsampling Permutation Entropy 
improves the precision of the classical rcMPE by avoiding the 
artifact cross-correlations, product of the signal’s preprocessing.

● rcDPE enhances the classification between faulty and non-faulty 
bearings in rotatory machines.

● In order to avoid aliasing effects, we applied an anti-aliasing 
filter matching the Nyquist frequency for each time scale. This 
allowed a better classification, even with increased variance 
compared to the unfiltered rcDPE method.

● For this dataset, lower dimensions allowed a better classification 
of the faulty components. Nonetheless, the filtered rcDPE
method successfully detected the difference, even for higher 
dimensions.
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