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•  Revival of angular-momentum diffusion in the quantum kicked rotor
with continuous momentum measurement

Trace 1:

Momentum-space diffusion
in the classical kicked rotor

Trace 2:

Suppression of classical 
chaos after a finite time t* 
in the quantum kicked rotor

Trace 3:

Recovery of chaotic energy 
growth in the observed 
quantum kicked rotor 
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1 Classical bloom and quantum death of deterministic chaos
1.1 Quantum chaos and decoherence (a 1990 result)



 Divergences of information content /  
production in deterministic chaos …

 Static structures:

•   Self-similar phase-space patterns
imply unbounded information density.

 Dynamical scenario:

•   Chaotic time evolution permanently
“produces” entropy, lifting it from
invisibly small to large scales.

 … are regularized in unitary
 quantum mechanics

 Static structures:

•   Quantum uncertainty limits the
resolution of phase-space structures.

 Dynamical scenario:

•   In systems with a finite number of
freedoms, quantum time-evolution
eventually becomes (quasi-)periodic.

1 Classical bloom and quantum death of deterministic chaos
1.2 There is no entropy production in closed quantum systems

•  Fundamental bounds on the information content of isolated
quantum systems prevent permanent entropy production,
characteristic of deterministic classical chaos
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•  The limits quantum mechanics imposes with respect to
information measures apply only in strictly closed systems.

•  No real system is perfectly closed (or else we could not
observe it).

•  Any coupling, however weak, to an environment with a
(quasi-) continuous spectrum opens access to an external
source of entropy.

•  Paradigmatic cases are
•  decoherence (e.g., measurement) and
•  dissipation (e.g., friction).

1 Classical bloom and quantum death of deterministic chaos
1.3 Breaking the splendid isolation



2 Quantum measurement and quantum randomness
2.1 Spin measurements and randomness

... 001001101 ...

... 110110010 ...

sequence of identical 
qubits in Schrödinger
cat states

random sequence
of classical bits in
σz eigenstates:
p(0)=p(1)=0.5

Stern-Gerlach
magnet
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2 Quantum measurement and quantum randomness
2.2 Hypothesis

•  In spin measurement, one classical bit of information per detected
particle is produced “from nothing”.

•  Such entropy production is incompatible with deterministic
unitary time evolution of the spin alone.

•  Consider spin, meter, and environment as a closed system evolving
unitarily as a whole: The total information content is conserved!

•  If a bit is “created” in the measurement (“quantum randomness”), it
can only come from the macroscopic ensemble meter + environment.

•  Can it be the result of a unitary time evolution, depending on
the initial state of the full system, spin + meter + environment?



2 Quantum measurement and quantum randomness
2.3 Three steps of a quantum measurement (von Neumann)

1   Generate correlations between object and meter states
through a suitable coupling, typically local in time

2   Turn quantum superpositions into classical alternatives
“first collapse of the wave packet”
creates entanglement due to the coupling of the meter
to a macroscopic environment,
leaves the measured object in a mixed state,
which only specifies probabilities for the outcomes of the measurement

3   Turn classical alternatives into sequences of random events
“second collapse of the wave packet”
upon leaving the apparatus, the measurement object returns to
a pure state, one of the eigenstate of the measured observable



2 Quantum measurement and quantum randomness
2.3 Three steps of a quantum measurement

Entanglement is reciprocal!

As the measured system gets entangled with the apparatus and
its environment, information on the state of the measured system
is shared with the environment and recorded in it:

The environment as a witness.

By reciprocity of entanglement, information on the state
of the apparatus is also shared with the measured system.

In this way, the time evolution of the measured system must also
depend on the initial state of the environment.



1   Before the measurement: object, meter and environment in pure states

2   During the measurement: object and meter entangled
with the environment

Note that the initial environment state        is featureless so far.

3   After the measurement: object leaves in a pure state

2 Quantum measurement and quantum randomness
2.4 Information balance of quantum measurement

So = − tr ρ̂o lb ρ̂o( )⎡⎣ ⎤⎦= 0

So > 0

ψe

So = 0



2 Quantum measurement and quantum randomness
2.4 Information balance of quantum measurement
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2 Quantum measurement and quantum randomness
2.4 Information balance of quantum measurement
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2 Quantum measurement and quantum randomness
2.4 Information balance of quantum measurement

object

meter

t
entanglement

1 bit

0

“first collapse” “second collapse”

SO t( )

pure pure 

mixed 

Partial entropy of the object



Measurement inside a closed cavity

3 Numerical / experimental test



•   The finite heat bath approach, developed for decoherence and
dissipation in quantum optics and chemistry, treats system and
environment as one closed system with unitary time evolution. 

•   Combine a model of decoherence in quantum measurement
à la Zurek et al. with the finite heat bath approach for meter +
environment.

•   Apply powerful algorithms for numerical simulation of the unitary
time evolution of object + (meter + environment).

•   Increase the number N of heat bath modes as far as possible.

•   Register the dependence of the measurement results
on the initial state of meter + environment.

3 Numerical / experimental test
3.1 Strategy



A parallel case: decoherence in a harmonic oscillator + finite bath*

3 Numerical / experimental test
3.2 Finite heat bath approach

time-dependent dissipation rate purity

energy decay non-Markovianity

*M. Galiceanu, M. W. Beims, W. T. Strunz: “Quantum energy and coherence exchange
with discrete baths”, Physica A 415, 294 (2014). 



3 Numerical / experimental test
3.3 Protocol

1   Prepare the object system in a neutral (Schrödinger cat) state
with respect to the observable to be measured
(for example, in an eigenstate of     or     , if     will be measured).

2   Perform measurements with a meter that comprises a large but finite 
number N of degrees of freedom (bath modes)

3   Register the evolution and the outcome of the measurements as they
vary with growing N,

observe how, as N → ∞, a typical few-body quantum dynamics (e.g.,
collapses and revivals), crosses over to that of a measurement with
a definite result that depends on the initial state of the meter.

σ̂ x σ̂ y σ̂ z



Ĥ = Ĥo + Ĥom + Ĥm
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Hamiltonians (spin-boson model with N  boson modes)

Initial state

   Ψ 0( ) = ψo 0( ) Ψm 0( )

two-level system ψo 0( ) : meter Ψm 0( ) :
pure state with σ̂ z = 0, e.g., 

  ψo 0( ) = ±x =
1
2

↑z ± ↓z( )  
pure state                         with

  Ψm 0( ) =
n=1

N

⊗ ψm,n 0( ) ,   P̂ = X̂ = 0

3 Numerical / experimental test
3.4 Quantum model



Expected initial time evolution of the state vector on the Bloch sphere

3 Numerical / experimental test
3.4 Quantum model



3 Numerical / experimental test
3.5 Numerical results for N = 1

Time evolution of the reduced density matrix of the spin, represented
on the Bloch sphere, numerical simulations for ω0 = 1.0, N = 150



 

4 Einstein ...

“God does not throw dice.”

Yes He does.
But they fall deterministically.


