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Abstract: Statistical energy savings calculations are fundamentally rooted in how well 

energy data can be normalized against influencing factors.  Attempts to predict monthly 

energy use in academic buildings based strictly on weather as a driver for energy fail 

because of variable monthly occupancy. A genetic based energy model is used to 

characterize monthly energy consumption in academic buildings or any other buildings with 

variable occupancy. Such a model is essential for both estimating savings when changes are 

made and for continuously commissioning the building. Monthly average outdoor air 

temperature is considered to reflect the weather driver on energy use. Monthly occupancy is 

based upon the the historical academic year calendar; occupancy is considered a linear 

function of number of normal academic days per month.. The multi-functional model 

developed is tested on both simulated and actual academic building energy data. The results 

demonstrate universally improved correlations. 
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1. Introduction  

Since 2007, 22 U.S. states have adopted energy efficiency resource standards, bringing the total 

number of states up to 26 as of 2011.  Typical annual energy reduction requirements range from 0.5 to 

2 percent per year [1]. Additionally, there has been substantial growth of Energy Service Companies 

(ESCOs), which are companies contracted to realize guaranteed savings from implemented energy 

reduction measures. The U.S. ESCO industry grew at about 7% per year between 2006 and 2008, and 

26% between 2009 and 2011.This industry now has annual revenues in excess of $7.1B. Key to this 

growth has been an increased spending rate in taxpayer-funded energy efficiency programs [2].  

ESCOs are faced with determining two different types of savings: 

 

1. Predicted Savings 

a. - based on outside temperature and occupancy with the use of a genetic algorithm or 

other statistical methods to predict energy use. 

b. – determined by a variety of methods before any ECMs have been put into effect, 

and consequently based only on data obtained prior to the ECM. 

2. Actual Savings - determined from a comparison of measurements before and after at least 

one Energy Conservation Measure (ECM) has been put into effect. 

 

An international standard has been developed by the Efficiency Valuation Organization (EVO) for the 

measurement a verification of Actual Savings called the International Performance Measurement and 

Verification Protocol (IPMVP) [3]. Savings are defined by the IPMVP as:  

 

                                                         

                                                                                                                              (1) 

Subject to the definitions: 

Adjustments – A factor that corrects for differences in conditions between the Benchmark and 

Reporting periods due to independent variables. 

Benchmark
1
 Period – The period of time ranging from the start of the energy data to the time 

ECMs were implemented. 

Reporting Period – The period of time ranging from the time the ECMs were implemented to 

the end of the energy data. 

 

Key to measuring actual savings is the proper characterization of Adjustments; in fact “simple 

comparisons of utility costs without such Adjustments report only cost changes and fail to report the 

true performance” [3]. Independent variables responsible for Adjustments come in many forms, 

including but not limited to meteorological variation, production rates, and facility size.  The IPMVP 

groups Adjustments into two categories: 

 

Non-Routine Adjustments – Adjustments that handle independent variables that are expected to 

remain constant throughout the Reporting and Benchmark Periods.  Common examples of 
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these independent variables include design and operation of equipment, facility size, and 

facility use type.  

Routine Adjustments – Adjustments that handle independent variables expected to change 

throughout the Reporting and Benchmark Periods.  Common examples of these independent 

variables include meteorological data, and production rates. 

 

Independent variables responsible for Non-Routine Adjustments, or “Static Variables”, must be 

monitored for change throughout the Reporting Period, and Non-Routine Adjustments must be made 

in the event that any of these Static Variables change.  While Non-Routine Adjustments may be 

difficult to calculate in the event that the Static Variables are poorly monitored or too numerous, it will 

be assumed for the purposes of this paper that all Non-Routine Adjustments can be effectively 

calculated. 

 

Independent variables responsible for Routine Adjustments, or “Dynamic Variables”, can be difficult 

to account for due to both a lack of clear definition of Dynamic Variables as well as a high degree of 

variation in these variables.  In the case of buildings where energy devoted to heating or cooling is a 

dominant factor, outdoor air temperature and occupancy are the most dominant Dynamic Variables 

and their effects have traditionally been taken into account with a regression analysis (Rabl et al., 1988 

[4], Rabl et al., 1992 [5] , Fels 1986 [6], Ruch 1993 [7]).  The IPMVP claims that when energy 

measurements used for savings calculations are performed on an entire facility, Savings should exceed 

10% of the Benchmark Period Energy if the Savings are to be distinguishable when the Reporting 

Period is less than two years [3]. This claim stems from the assumption that a substantial portion of the 

Benchmark Energy is unexplained by the Adjustments – thus, improving the accuracy of the 

Adjustments would allow for the accurate measurement of Savings even when Savings are under 10% 

of the Benchmark Energy.   

 

In total, the techniques for predicting / forecasting energy data, e.g., for making Adjustments,  can be 

divided up into 5 approaches [8]: 

- Engineering Methods 

- Statistical Approaches  

- Artificial Neural Networks 

- Support Vector Machines 

- Grey Models 

Energy Methods are based upon physical energy models of buildings of varying detail. From these 

models, the energy model is first calibrated using historic energy use, and once calibrated can be used 

to both predict future energy use and estimate savings from specific measures. As noted by Zhao and 

Magoules, however, these techniques often rely upon detailed information about a building, which 

may not be available. Without precise inputs, the estimates from these types of models can have high 

uncertainty [8].   

 

Statistical regression methods aim to utilize only historical energy data and possibly other energy 

drivers such as occupancy and incident solar energy,   in order to model past energy use and thus be 
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poised to predict future energy use and predict savings.  Correlating energy use with weather 

variation permits estimation of heating and cooling energy. The nature of the weather information is 

variable. White and Reichmuth attempted to use average monthly temperatures to predict monthly 

building energy consumption; an approach that is more accurate because it accounts for how an 

individual user heats and cools their building rather than standard procedures which normally use 

heating and cooling degree days or temperature bins, which employ assumed 65 deg. F balance point 

temperatures for heating an cooling [9]. Westphal and Lamberts correlated monthly energy use with  

monthly average of maximum and minimum temperatures, atmospheric pressure, cloud cover and 

relative humidity [10]. Kissock et  al. correlated monthly energy use with only monthly dry bulb 

temperature to develop building heating and cooling slopes (energy use / time period / degree 

temperature change) along with balance point temperatures for heating and cooling [11]. These 

balance point temperatures could be used to estimate heating and cooling degree hours in a typical year 

using local typical weather year data available from the NOAA(National Climatic Data Center). 

Finally, in buildings dominated by internal loads where energy use is far less or negligibly dependent 

on weather variation, it is essential that statistical methods utilize occupancy variation as a driver for 

energy use. But, occupancy as an input can be problematic. This data is generally less available than 

building energy characteristics. A research vein has emerged to measure occupancy in a building real 

time. RFID technology has been employed to measure real time the entrance of an occupant into a 

building [12]. Newsham and Birt used simple occupancy sensors and logical inference of sensor input 

to estimate occupancy [13] An interesting study by Bellala et al. of academic buildings based 

occupancy models upon computer network port-level logs. This study showed a correlation between 

occupancy and network activity [14].  

 

Zhao and Margoules describe artificial neural networks as being quite effective in both modeling past 

energy use and in predicting future energy use [8]. However, unlike the regression approaches, these 

approaches are not capable of illuminating the drivers for energy use. When multiple drivers exist 

(such as occupancy and weather), it is impossible to determine the fraction of energy owing 

specifically to the drivers. Grey models are particularly useful when there is only incomplete or 

uncertain data. As noted by Zhao and Margoules, there has been little application of this approach to 

buildings.  

2. Goal 

The goal of this paper is to develop a method for predicting future energy use in academic buildings, as 

well as to identify buildings for upgrade. This goal is only achievable if the variation in functioning of 

the building due to the the academic calendar can be accounted for.  

 3. Analysis 

This study begins with a statistical analysis of energy use in the 14 primary academic buildings at the 

University of Dayton which have calendar year variation in use. Included in this mix of buildings are 

those dedicated to teaching/research, service, administration, and residential living. The initial 

statistical analysis seeks to correlate electrical energy use in these buildings with monthly average 

outdoor temperature (using the approach of White and Reichmuth [9]), of the form: 
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Monthly Electric Use = Baseline + Cooling Slope * H( T- TbalC) * ( T- Tbalc)  

                                      + HS*H(Tbalc - Tbalc1)
 *
(Tbalc - Tbalc1)

  

 

However, as shown in Table 1, which summarizes the correlation r-squared value for each building, 

this correlation yields generally poor results, with r-squared values raning from 0.08 to 0.69.  

Table 1. r-squared values from standard statistical analysis 

Bldgs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

r-
squared 0.14 0.41 0.11 0.23 0.69 0.17 0.1 0.09 0.08 0.29 0.19 0.29 0.175 0.093 

 

These buildings are cooling load dominated; this explanation partially explains the poor correlations 

since the cooling often compensates for human loads. However, there certainly should be increased 

cooling energy use in the summer.  Figure 1, which shows the electrical energy use in a representative 

academic building – where there is significant summer variation in use, seems to sometimes  contradict 

this expectation. This figure highlights in yellow the summer months. While often over the time period 

from 2002-2009 the summer energy data exceeds the mean energy data given by the trendline, this 

isn’t always the case. Moreover, some of the peak energy months aren’t in the summer.  

 

Figure 1.Monthly electrical energy (kWh) vs Date 

 

Figure 2 shows the monthly electrical energy use as a function of mean monthly temperature during 

the meter period. The summer data points are indicated by square red blocks, while the energy data for 

the rest of the year are shown as blue diamonds. There are some obvious points to illuminate. First, 

there is in general only a weak correlation of energy use with temperature. Secondly, the summer 

months show only a nominally improved dependence upon temperature. Thus, there must be other 

influences on energy use which aren't considered in the statistical analysis given by equation (1).  
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Figure 2. Monthly electric energy use as a function of mean outdoor temperature during the billing 

period. 

 

With a goal to be able to predict monthly energy use in order to evaluate the possibility of problems in 

the building, it is clear from Figure 1 and 2 that the varied use of the academic building during summer 

months must somehow be accounted for.  

 

The building characterized in Figures 1 and 2 has nearly all classrooms fully occupied during the 

academic year (Aug. 22 – May 5), and is only fractionally occupied during the summer and during a 

winter break. At the same time, faculty/staff offices see a slight summer decrease in occupancy, either 

because of summer study abroad participation, off-site research, or simply because of vacations taken. 

The key to improving predictive capability for the energy use is to somehow account for the variation 

in functioning during the summer and holidays. Ideally, this variation could be correlated to 

occupancy. Occupancy sensors ideally could be used for measurement. However, in this application 

such data is unavailable.  Melfi et al. estimated occupancy via building wide network utilization [15].  

This approach, while clever and novel, could not be employed in this study.  

 

Another approach is used to account for functional variation. Given the fact that the summer ‘bump’ in 

energy use due to an expectedly increase in cooling load is not realized almost certainly because the 

internal human loads (and even computer loads) decrease during the summer, weekends, and holidays, 

a modified statistical model representing energy use dependence on weather and occupancy is posed.  

This approach assumes a linear occupancy functionality to the number of normal class days per month. 

For example, during the nomral academic year in April 2009, there were 16 class days because of the 

Easter holiday and there were 20 days in which the residences were occupied. Occupancy for academic 

buildings was defined as the ratio of class days in a month to total days in the month. For residential 

buildings, occupancy is defined as the ratio of days in which the residence hall was occupied in a 

month to the total number of days in the month.  In the summer months, the occupancy value for all 

academic and residential buildings was set to 0.  
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In order to determine prior occupancy in each building, the historical academic calendar for the 

University of Dayton was used.  Table 2 presents the ‘occupancy’ measure for the various types of 

academic buildings over the period from Jan. 15, 2002 to Sept. 15, 2009.  

 

Table 2. Academic building type monthly high occupancy data obtained from correlation with the 

historical academic year calendar 

Date 
Days in 

Month Total 

Residence Hall: 
Days Occupied in 

Month 

Classrooms: 
Days Occupied 

in Month 

Residence Hall: 
Percentage of 
Month 
Occupied 

Classrooms: 
Percentage of 

Month 
Occupied 

1/15/2002 31 27 19 0.87 0.61 

2/15/2002 28 23 17 0.82 0.61 

3/15/2002 31 23 17 0.74 0.55 

4/15/2002 30 28 20 0.93 0.67 

5/15/2002 31 5 2 0.16 0.06 

6/15/2002 30 0 0 0.00 0.00 

7/15/2002 31 0 0 0.00 0.00 

8/15/2002 31 8 5 0.26 0.16 

9/15/2002 30 29 20 0.97 0.67 

10/15/2002 31 31 23 1.00 0.74 

11/15/2002 30 25 17 0.83 0.57 

12/15/2002 31 12 9 0.39 0.29 
,,, ,,, ,,, ,,, ,,, ,,, 

,,, ,,, ,,, ,,, ,,, ,,, 

,,, ,,, ,,, ,,, ,,, ,,, 

10/15/2008 31 26 21 0.84 0.68 

11/15/2008 30 25 16 0.83 0.53 

12/15/2008 31 19 14 0.61 0.45 

1/15/2009 31 26 19 0.84 0.61 

2/15/2009 28 26 19 0.93 0.68 

3/15/2009 31 29 22 0.94 0.71 

4/15/2009 30 20 16 0.67 0.53 

5/15/2009 31 3 1 0.10 0.03 

6/15/2009 30 0 0 0.00 0.00 

7/15/2009 31 0 0 0.00 0.00 

8/15/2009 31 9 4 0.29 0.13 

9/15/2009 30 29 21 0.97 0.70 

 

In this context, an objective function is hypothesized to estimate past energy use. This objective 

function, shown below, considers as influences:  

 

 Base loads (lighting / appliances / computers); 

 Weather (dry-bulb temperature); and 

 Occupancy 

Predicted Monthly Electric Usei = Baseline + Cooling Slope * Heaviside( T- Tbalc) * ( T- Tbalc)
CSE
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                                      + Occupancy Slope * Occ                                                          (2) 
 

In this equation, Baseline refers to energy use which is not dependent upon weather or occupancy; thus 

it represents the monthly lighting/appliance/computing energy load during the lower occupied periods. 

The Cooling Slope (kWh/month/deg.F) and Occupancy Slope are the sensitivities of energy use to 

respectively mean monthly average temperature, T, and Occ (occupancy).  Tbalc is the cooling balance 

point temperature; e.g., the outdoor dry-bulb temperature above which cooling occurs. The monthly 

outdoor temperatures for Dayton, OH, USA over the study period were obtained from the NOAA [16].   

The exponent CSE enables a step change in predicted monthly energy use for temperatures above Tbalc, 

while permitting an increase of cooling energy for temperatures exceeding this temperature. This 

situation is common in some of the academic buildings, where the chiller(s) may be turned off during 

winter As noted previously, the Occ variable is normalized to total days in a month, such that it 

represents the % of days in a month that class is in session (e.g., the last two columns in Table 2).  

 

A genetic algorithm optimization approach was used to find the optimal values of the presumed  

independent factors (Baseline, Cooling Slope, Tbalc, CSE, and Occupancy Slope). The optimization 

process attempts to maximize the r-squared, where r-squared is the goodness measure of the fit 

between the Predicted Monthly Electric Use and the billed electric energy use, Actual Monthly Electric 

Use (kWh). This correlation was based only on the last two years of billed data. The objective function 

is shown below in equation (3).  

 

    -                                                                              (3) 

  

where  

r-squared   
                                                     

   

                                                         
   

       (4) 

 

This optimization required the following non-linear constraint, which basically says that the sum of the 

monthly predicted energy over the study period (N months) must be equal to the sum of the actual 

energy use over the same period. Thus, the annual predicted energy use must be equal to the annual 

actual energy use.  

 

                                                   
                           

 
     (5) 

4. Results 

The optimization given by equations (3) -(5) were applied to all of the academic buildings for which 

the functionality varied throughout the year. The summary results are shown in Table 3. Included in 

this table are the building names, the r-squared value of the standard fit (e.g., the  fit obtained without 

consideration of occupancy influences), and the r-squared value of the improved fit which included 

occupancy data. It is apparent that in all cases but 1 there is significant improvement. Interestingly, the 

one building which didn’t realize improvement in the r-squared value, was the engineering building 

(Kettering). This building includes many labs, all of which operate year round. The energy change in 

the summer is certainly less; thus the occupancy dependence was small.  
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Table 3. Summary of r-squared goodness measures of standard and improved fits for all buildings in 

the study 

Building # r-squared, original r-squared,improved 

Anderson 0.138 0.56 

Humanities 0.41 0.48 

Kettering 0.110 0.114 

Kennedy Union 0.230 0.37 

Liberty  0.69 -- 

Marianist 0.169 0.357 

Marycrest 0.100 0.221 

Miriam 0.09 0.183 

Recplex 0.083 0.307 

Roesch 0.293 0.331 

Sherman 0,19 0.44 

Stuart 0.295 0.410 

VWK 0.175 0.389 

Wohleben 0.093 0.397 

 

Figures 3 and 4 offer representative comparisons of actual energy use and predicted energy use as a 

function of month by the standard and improved fits for two of the buildings. Both figures highlight 

the summer months (yellow box), where the occupancy level is at a 0 level. A clear reason for the 

improvement in the fit is that energy use in lower occupancy times  could be identified. Both figures 

show the predicted energy use during these periods beneath that predicted from the standard fit.  

 

It is also clear that the regression fits still have room for improvement. One reason is that the energy 

data maintained by the university didn’t include the actual billing date. Thus, the calculated monthly 

average temperatures can be off by as much as 2 degrees F. Secondly, what cannot be included in the 

statistical analysis are changes in the building made by facilities personnel in order to keep the 

building HVAC operational. There are significant building fixes which routinely cause the energy use 

in all buildings to fluctuate significantly.  



 

 

10 

 

Figure 3. Actual monthly versus predicted monthly energy use for month for standard and occupancy 

influenced fit (Marycrest). 

 

 

Figure 4. Actual monthly versus predicted monthly energy use for month for standard and occupancy 

influenced fit (Recplex). 

4. Conclusions  

A new approach for predicting monthly electrical energy use in cooling load dominated academic 

buildings has been posited. This approach models occupancy as a binary function, considering high 

occupancy during the normal academic year and low occupancy characterizing building use during the 

summer, weekends, and holidays. The occupancy level is attainable from historical academic year 
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calendars. Results have shown that inclusion of the occupancy level in the predictive equation for 

energy use improves significantly the regression goodness, as evidenced by r-squared values which 

often are two times higher.  

 

While the regressions developed still do not explain all variation with the actual data, they offer at least 

an improved means to estimate monthly energy use. Such estimates can be compared to actual use as 

part of a continuous commissioning process. When actual energy use in any month is well higher than 

expected energy use, facilities personnel can be directed to investigate the cause. 
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