Application of Rényi entropy-based 3D electromagnetic centroids to segmentation of fluorescing objects in tissue sections

Renata Štysová-Rychtáriková et al.

Laboratory of Experimental Complex Systems Institute of Complex Systems Faculty of Fisheries and Protection of Waters University of South Bohemia in České Budějovice

Entropy 2021, 05/05-07/2021

I. Theoretical assumptions

- Extended Nijboer-Zernike Theory
- Multifractality

2. Technical solutions

- Small camera pixel
- Primary vice-bit camera signal
- Short z-step
- Strong light illumination

Extended Nijboer-Zernike Theory

+ Theory of Electromagnetic Centroid Volume electromagnetic centroid:

- intensity extreme
- the same intensity in two consecutive images

Rychtáriková et al., Ultramicroscopy, 2017.

Two consecutive z-stack images

Rychtáriková et al., Entropy, 2018.

Multifractality approach: Point Divergence Gain $\Omega_{\alpha}^{(L \to M)}$

Difference of two Rényi entropies:

$$\Omega_{\alpha}^{(L \to M)} = \left[\frac{1}{1-\alpha}\log_2\sum_{i=1}^{j} \left(p_i^{(L \to M)}\right)^{\alpha} - \frac{1}{1-\alpha}\log_2\sum_{i=1}^{j} (p_i)^{\alpha}\right]$$

$$\Omega_{\alpha}^{(L \to M)} = \frac{1}{1-\alpha} \log_2 \left[\frac{(n_L - 1)^{\alpha} - n_L^{\alpha} + (n_M + 1)^{\alpha} - n_M^{\alpha}}{C_{\alpha}} + 1 \right]$$

Specific case
$$\alpha = 2$$
 (the Rényi collision entropy)

$$\begin{aligned}
&\text{Taylor s.} \\
\Omega_2^{(L \to M)} &= \frac{1}{1-\alpha} \log_2 \left[\frac{2}{c_2} (n_M - n_L + 1) + 1 \right] \stackrel{\downarrow}{\approx} A(n_M - n_L) + B
\end{aligned}$$

i – value of intensity

M- pixel intensity in the first image (I)

L – pixel intensity in the following image (I+1)

j- number of intensities occupied in the image

 p_i – probability of the occurrence of intensity *i* in the image

 n_i - number of the occurrence of intensity *i* in the image α - the Rényi dimensionless coefficient ($\alpha \ge 0, \alpha \ne 1$) $C_{\alpha} = \sum_{i=1}^{j} n_i^{\alpha}$ - constant for intensity distribution of image (I)

Rychtáriková et al., Entropy, 2018.

Multifractality approach

Point Divergence Gain Entropy I_{α} :

$$I_{\alpha}(\mathbf{I}_{a};\mathbf{I}_{b}) = \sum_{i=1}^{n} \left| \Omega_{\alpha}^{a_{i} \to b_{i}} \right| = \sum_{L=1}^{j} \sum_{M=1}^{j} n_{lm} \left| \Omega_{\alpha}^{L \to M} \right|$$

Point Divergence Gain Entropy Density P_{α} **:**

$$P_{\alpha}(\mathbf{I}_{a};\mathbf{I}_{b}) = \sum_{L=1}^{J} \sum_{M=1}^{J} X_{lm} |\Omega_{\alpha}^{L \to M}| \qquad \begin{array}{c} X_{lm} = \mathbf{1}, \ n_{lm} \ge \mathbf{1} \\ X_{lm} = \mathbf{0}, \ n_{lm} = \mathbf{0} \end{array}$$

 $I_a = \{a_1, ..., a_n\}$ and $I_b = \{b, ..., b_n\}$ – two consecutive one-dimensional data frames with pixel indices a_i and b_i , respectively. n_{lm} – number of substitutions $l \rightarrow m$ at transformation $I_a \rightarrow I_b$

$\Omega_{\alpha}^{(L \to M)}$ in microscopy image processing

I.3D segmentation

- Finding "volume electromagnetic centroid"
- Movements detection

2. Image classification

- Finding in-focus region/image

Application in fluorescence microscopy

Prostate cancer tissue section

- DAPI, red, and green autofluorescence
 - Pixel size 328×328 nm²
 - Wide-field mode

TissueFaxs-PLUS-Confocal fluorescence microscope (TissueGnostics, Vienna, AT)

Rychtáriková et al., Arxiv 1709.03894, 2017.

Outline of calculation

PSFs

RAf

Dalibor Štys, University of South Bohemia, CZ Michael Fischer, Donau University, Krems, AT Gero Kramer, Medical University, Vienna, AT Georg Steiner, TissueGnostics, Vienna, AT

ACKNOWLEDGEMENT

fa ImageCode fa Optax

THANK YOU FOR YOUR ATTENTION