

Effects of plantation establishment on yields and morphological traits of *Sida hermaphrodita* and *Silphium perfoliatum* for sustainable biomass production

Marek Bury¹ &

Teodor Kitczak², Ewa Możdżer², Hanna Siwek³, Małgorzata Włodarczyk³,

West Pomeranian University of Technology in Szczecin (Poland)

¹ Department of Agroengineering, Lab of Agronomy (<u>Marek.Bury@zut.edu.pl</u>)

- ² Department of Environmental Management
- ³ Department of Bioengineering

1st International Electronic Conference on Agronomy, 03-17 May 2021

The perennial crops used for biomass production for energy purposes are growing in a sustainable way and they have economic advantages (low cost of cultivation and management) in contrast to annual energy crops, especially to maize.

Particularly the "novel and innovative", more efficient species like **Virginia mallow** or **Pennsylvania fanpetals** (*Sida hermaphrodita* L. Rusby) and **cup plant** (*Silphium perfoliatum* L.), besides their high yield potential, provide additional environmental profits (biodiversity, carbon storage (removing of CO_2 from the atmosphere), protection and benefit for insects and pollinators, e.g. honeybees and bumblebees) and as well as excellent products to biogas plants.

Flower of cup plant

Flowers of Virginia mallow

The aim of the study

Assessment of the impact of plantation establishing methods (generative by seeds vs. vegetative by planting seedlings) and various harvest strategies (one cut vs. two cut strategy during the vegetation season) on morphological traits and biomass production of two Sida phenotypes (from the north and southern Germany) and Silphium, grown on marginal soil in north-western Poland.

Material and methods

Experimental sites

Agricultural Experimental Station in Lipnik **(53°20'35.8" N, 14°58'10.8" E**), which belongs to West Pomeranian University of Technology in Szczecin. Establishing year - 2016

Experimental Design

Randomized block design with 4 replications

Two provenances of Sida (Sida1 and Sida2) and one of Silphium

Establishment method:

- vegetative by planting of rooted seedlings: 44,000 per 1ha (planting)
- generative by sowing seeds (seed): ~ 3 kg ha⁻¹

Management

Fertilization: 100 kg N, 35 kg P and 110 kg K per 1ha before planting (depending on the soil fertility), 100 kg ha^{-1} N - by start of vegetation next years

Weeds - Manual hoeing between the rows (only in the first year)

Harvest

One harvest strategy: in October (BBCH 79-81) Two cutting strategy: in June (BBCH 55-59) and October (BBCH 69-71)

1 - Lipnik (53.20N; 14.58E) near **Szczecin** (North-Western **Poland**), the average annual temperature was 8.5°C, with an annual precipitation of 555 mm, which peaks in summer. The soil texture was sandy with an acid pH (Dystric Brunic Arenosols).

2016 – Establishing year

Sida1 (from South Germany) - planting

Sida1 – sowing (seed)

2016 (Establishing year) - October

Regrowth of plants in spring 2017

(the second year and the first year of full vegetation

Silphium and Sida plants

The harvest of plants from two-cut strategy plots Ju

June 2017

Silphium before harvest

Second **regrowth** of plants in summer 2017

Silphium seeds (left), Sida2 seedlings (right)

October 2017 - before harvest

October 2017 - before harvest

The third year of experiment and the second year of full vegetation Regrowth of plants - May 2018

Silphium (seed)

Sida2 (planting)

June 2018 before harvest

June 2018, before harvest

1st International Electronic Conference on Agronomy, 03-17 May 2021, Bury, Poland

Plants regrowth after the first cut on both Sida phenotypes (left) and on Silphium (bottom) - **7.09.2018**

One cut

Silphium (seed)

October 2018 before harvest

1st International Electronic Conference on Agronomy, 03-17 May 2021, Bury, Poland

October 2018 before harvest

June 2019 before harvest

October 2019 before harvest

LAI measurement by IAESTE student from Ghana (Sheriff N.) – September 2018

Plant stress measurement by IAESTE student from Turkey (Zeynep K.) – June 2019

Results

The plant density per 1 ha

Fig. 1. The number of plants per 1 ha on plots harvested twice a year (June and October)

Table 1. The number of	plants per	1 ha on plots	harvested once a	a year ((October)
------------------------	------------	---------------	------------------	----------	-----------

Crop /Establishing mathed	Year					
Crop /Establishing method	2016	2017	2018	2019		
Sida1 seed	112000	84000	68000	50000		
Sida1 planting	44000	44000	42000	42000		
Sida2 seed	108000	80000	64000	49000		
Sida2 planting	44000	44000	42800	42000		
Silphium seed	140000	110000	72000	62000		
Silphium planting	44000	44000	42000	42000		

The plant height

Fig. 2. The plant height [m] of plants harvested twice a year (June and October)

Fig. 3. The plant height [m] of plants harvested once a year (in October)

The shoot diameter

Fig. 4. The shoot diameter [mm] of plants harvested twice a year (June and October)

Fig. 5. The shoot diameter [mm] of plants harvested once a year (June and October)

The number of shoots per one plant

Fig. 6. The shoot number per one plant on plots harvested twice a year (June and October)

Fig. 7. The shoot number per one plant on plots harvested once a year (October)

The fresh biomass yield

Fig. 8. The fresh biomass yield [Mg^{-ha⁻¹}.yr¹] of plants harvested twice a year (June and October)

Fig. 9. The fresh biomass yield [Mg⁻ha⁻¹·yr¹] of plants harvested once a year (October)

The fresh biomass yield (cumulative)

Fig. 10. The total (cumulative) fresh mass yield [Mg⁻ha⁻¹] of plants harvested twice a year (June and October)

Fig. 11. The total (cumulative) fresh mass yield [Mg⁻ha⁻¹] of plants harvested once a year (in October)

The dry matter content

Establishing method \Year	2016	2017	2017	2018	2018	2019	2019
Harvest month	Х	VI	Х	VI	Х	VI	Х
Sida1 seed	28,30	36,60	32,40	29,00	34,00	30,10	35,00
Sida1 planting	29,23	38,10	29,20	28,00	33,00	30,70	39,00
Sida2 seed	23,13	38,90	32,60	32,00	32,60	34,00	39,50
Sida2 planting	25,79	39,10	30,00	27,50	32,00	30,40	36,00
Silphium seed	16,84	29,90	17,00	16,00	20,00	14,08	20,00
Silphium planting	16,82	28,80	17,20	18,00	21,00	13,56	23,10

Table 2. The dry matter content [%] of plants harvested twice a year (June and October)

Table 3. The dry matter content [%] of plants harvested once during the growing season

Establishing method \Year	2016	2017	2018	2019
Sida1 seed	30,19	39,40	37,00	39,00
Sida1 planting	32,32	37,80	36,00	37,50
Sida2 seed	28,79	39,10	36,50	39,50
Sida2 planting	30,18	38,90	32,60	39,00
Silphium seed	17,13	27,00	31,00	29,00
Silphium planting	15,97	28,00	33,00	25,00

The dry biomass yield

Fig. 12. The dry biomass yield [Mg⁻ha⁻¹·yr¹] of plants harvested twice a year (June and October)

Fig. 13. The dry biomass yield [Mg^{-ha⁻¹}.yr¹] of plants harvested once a year (October)

The dry biomass yield (cumulative)

Fig. 14. The total (cumulative) dry mass yield [Mg⁻ha⁻¹] of plants harvested twice a year (June and October)

Fig. 15. The total (cumulative) dry ass yield [Mg⁻ha⁻¹] of plants harvested once a year (October)

Conclusions

•Both investigated perennial plant species: Virginia mallow (*Sida hermaphrodita* (L.) Rusby) and cup plant (*Silphium perfoliatum* L.) established well and provided harvestable yields in full vegetation years.

•The establishing of plantation by sowing seeds resulted in higher biomass yield (ca. 12.0 by Sida and 19.0 Mg·ha¹·yr¹ by Silphium) compared to the planting method (ca. 9.0 and 18.0 Mg·ha¹·yr¹ by Sida and Silphium, respectively), due to the higher plant density obtained after the sowing method compared to the planting method.

•The harvest method had a clearly influence on DMY. In the case of one harvest strategy the DMY increased from 10 (in 2017) to 17 Mg·ha¹·yr¹ (2019) on average for Sida and from 14.5 (2017) to 23 Mg·ha¹·yr¹ (2019) for Silphium. By two harvest strategy the total biomass yield (two cuts in June and October) decreased, in contrast, during investigation period from 13 to 11 Mg·ha¹·yr¹ on average for Sida and from 26 to 17 Mg·ha¹·yr¹ for Silphium

• The cup plant (*Silphium perfoliatum*) produced more biomass as Sida in the same habitat and climatic conditions.

This presentation shows the results of a field study on the growth and yields of two innovative energy crops, Virginia mallow (*Sida hermaphrodita* (L.) Rusby) and cup plant (*Silphium perfoliatum* L.), tested in the frame of **SidaTim** project in Poland, Germany, Italy and UK. **Project: Novel Pathways of Biomass Production: Assessing the Potential of Sida hermaphrodita and Valuable Timber Trees.**

Project partners:

This project has received funding from the European Union's **Horizon 2020** Research and Innovation Programme (ERA-NET CO-FUND FACCE SURPLUS). The project was sponsored by:

Thank you very much for your attention

Bumblebee on a flower of Silphium – Sept. 2018

1st International Electronic Conference on Agronomy, 03-17 May 2021

Bury Marek

West Pomeranian University of Technology in Szczecin (Poland) Faculty of Environment Management and Agriculture, Department of Agroengineering, Lab of Agronomy, <u>marek.bury@zut.edu.pl</u>