

The Response of Baby Leaf Lettuce to Selenium Biofortification under Different Lighting Conditions

Aušra Brazaitytė, Jurga Miliauskienė, Viktorija Vaštakaitė-Kairienė, Rūta Sutulienė, Kristina Laužikė, Kamilė Stašytė, Pavelas Duchovskis, Giedrė Samuolienė

Introduction

Figure 1. The health benefits of selenium. Source: Crystals 2018, 8, 188; doi:10.3390/cryst8050188

Introduction

Figure 2. Se biofortification to improve human plant-foods. Source: Molecules, 2021, 26, 881. https://doi.org/ 10.3390/molecules26040881

Introduction

The aim of study was to determine the responses of baby leaf lettuce to various Se doses in hydroponic solution at different ratio of blue and red light in light-emitting diodes lighting.

Materials and Methods

- Lettuce (Lactuca sativa, 'Little Gem') (CN Seeds, United Kingdom)
- Lighting: blue (B 447 nm) and red (R 660 nm) light-emitting diodes (LED) ratios: 10%B:90%R, 75%B:25%R (treatments code B10R90, B75R25)
- Se doses natrium selenate (Na₂SeO₄):
 - > EXP1 Se of 0, 1, 3 ppm were applied at 11th DAS (days after sowing)
 - EXP2 Se of 0, 0.5, 1 ppm were applied at 11th DAS and 17th DAS
- Nutrient solution [mg L⁻¹]: N, 120; P, 20; K, 128; Ca, 88; Mg, 40; S, 53; Fe, 1.6; Mn, 0.08; Cu, 0.08; B, 0.16; Zn, 0.8; Mo, 0.2

Results - growth <u>EXP1</u>

Figure 3. Effect of different blue-red light ratio in LED lighting and selenium doses on growth parameter of baby leaf lettuce. B10R90, B75R25 – a percentage of blue (B) and red (R) light. Se0, Se1, Se3 – selenium doses 0, 1, 3 ppm respectively. Means with different letters are significantly different at the P < 0.05 level by Tukey's honestly significant difference test.

AWVUC

Results - growth <u>EXP2</u>

Figure 4. Effect of different blue-red light ratio in LED lighting, selenium doses and their application time on growth parameter of baby leaf lettuce. B10R90, B75R25 – a percentage of blue (B) and red (R) light. Se0, Se1, Se3 – selenium doses 0, 1, 3 ppm respectively. DAS – days after sowing. Means with different letters are significantly different at the P < 0.05 level by Tukey's honestly significant difference test.

Results – photosynthetic rate, chlorophyll and flavonols index <u>EXP1</u>

Figure 5. Effect of different blue-red light ratio in LED lighting and selenium doses on photosynthetic rate, chlorophyll and flavonols indexes of baby leaf lettuce. B10R90, B75R25 – a percentage of blue (B) and red (R) light. Se0, Se1, Se3 – selenium doses 0, 1, 3 ppm respectively. Means with different letters are significantly different at the P < 0.05 level by Tukey's honestly significant difference test.

Results – photosynthetic rate, chlorophyll and flavonols index <u>EXP2</u>

Figure 6. Effect of different blue-red light ratio in LED lighting, selenium doses and their application time on photosynthetic rate, chlorophyll and flavonols indexes of baby leaf lettuce. B10R90, B75R25 – a percentage of blue (B) and red (R) light. Se0, Se1, Se3 – selenium doses 0, 1, 3 ppm respectively. DAS – days after sowing. Means with different letters are significantly different at the P < 0.05 level by Tukey's honestly significant difference test.

LAMMC

Results – mineral nutrients EXP1

Variables	les Treatment									
		B10R90		B75R25						
	Se0		Se1 Se3		Se1	Se3				
Р	6.37 ± 0.70^{d}	8.95±1.69 ^{bc}	7.61±0.31 ^{cd}	14.47±0.61 ^a	14.36±0.45 ^a	10.13±0.75 ^b				
К	12.75±0.36 ^d	15.67±0.27°	21.38±0.32 ^b	22.09±0.21 ^b	21.96 ± 0.26^{b}	27.05±1.07 ^a				
Са	2.53±0.87 ^c	5.96±2.11 ^b	8.95±0.16 ^a	10.14±0.21 ^a	10.34±0.13 ^a	9.67±0.64 ^a				
Mg	2.31±0.41 ^d	3.23±0.32 ^c	4.48 ± 0.14^{ab}	4.23±0.03 ^b	4.29 ± 0.08^{b}	4.96±0.25 ^a				
S	0.76±0.04 ^{ab}	0.72±0.09 ^b	0.88 ± 0.06^{a}	0.48±0.01 ^c	0.48±0.02 ^c	0.68 ± 0.04^{b}				
Mn	0.021±0.004 ^c	0.031±0.007 ^{bc}	0.035 ± 0.004^{b}	0.049±0.0.002 ^a	0.050 ± 0.004^{a}	0.048±0.002 ^a				
Fe	0.046±0.007 ^c	0.081±0.033 ^{bc}	0.098±0.011 ^{abc}	0.123±0.010 ^{ab}	0.140 ± 0.026^{ab}	0.160±0.034 ^a				
Zn	0.037±0.002°	0.064 ± 0.018^{b}	0.066 ± 0.002^{b}	0.100 ± 0.005^{a}	0.101 ± 0.002^{a}	0.081 ± 0.004^{ab}				

Table 1. Effect of different blue-red light ratio in LED lighting and selenium doses on mineral nutrients content of baby leaf lettuce. B10R90, B75R25 – a percentage of blue (B) and red (R) light. Se0, Se1, Se3 – selenium doses 0, 1, 3 ppm respectively. Means with different letters are significantly different at the P < 0.05 level by Tukey's honestly significant difference test.

Results – mineral nutrients <u>EXP2</u>

	Treatment											
Variables	B10R90					B75R25						
	Se0	Se0.5		Se1		Se0	Se0.5		Se1			
		11 DAS	17 DAS	11 DAS	17 DAS		11 DAS	17 DAS	11 DAS	17 DAS		
Р	12.12±0.17 ^{cd}	12.55±0.27°	10.31±0.23 ^e	10.99 ± 0.48^{cde}	10.97±0.61 ^{de}	14.23 ± 0.26^{b}	16.03±0.99ª	15.77±0.63 ^{ab}	11.29±0.14 ^{cde}	16.06±1.00 ^a		
K	21.91±057 ^{ab}	22.04±0.63 ^{ab}	$20.91{\pm}0.14^{b}$	21.43±0.70 ^{ab}	21.46±0.96 ^{ab}	23.21±0.39 ^a	22.72±0.43 ^{ab}	22.84±1.54 ^{ab}	23.10±0.80ª	23.30±0.57ª		
Ca	8.99±0.86 ^{bcd}	9.37±0.08 ^{bc}	7.89±0.05 ^d	8.29±0.37 ^{cd}	7.92±0.37 ^d	9.95±0.50 ^{ab}	11.16±0.27 ^a	11.17±0.19 ^a	8.61±0.43 ^{bcd}	11.31±0.48ª		
Mg	3.68±0.30bc	3.78±0.11 ^{abc}	3.55±0.07 ^{bc}	3.40±0.01°	3.32±0.11 ^c	4.12±0.27 ^{ab}	4.19±0.13 ^{ab}	4.41±0.32 ^a	4.14±0.19 ^{ab}	4.41±0.25 ^a		
S	0.44±0.02 ^{cd}	0.46 ± 0.01^{bcd}	0.40 ± 0.01^{d}	0.44 ± 0.01^{bcd}	0.48±0.01 ^{bcd}	0.67±0.05ª	0.52±0.03 ^{bc}	0.52±0.05 ^{bc}	0.52 ± 0.05^{bc}	0.54±0.01 ^b		
Mn	0.050 ± 0.008^{abc}	0.043 ± 0.001^{abc}	0.041 ± 0.001^{bc}	0.042 ± 0.003^{bc}	0.040±0.002 ^c	0.053±0.004 ^{abc}	0.062±0.003ª	0.059±0.011 ^{abc}	0.049±0.003 ^{ab}	0.059±0.015 ^{ab}		
Fe	0.14±0.05 ^a	0.15±0.01a	0.12±0.02 ^a	0.15±0.05ª	0.10±0.01ª	0.15±0.02ª	0.20±0.03ª	0.18 ± 0.07^{a}	0.17±0.02ª	0.15±0.02 ^a		
Zn	0.082 ± 0.004^{bcd}	0.073 ± 0.006^{d}	0.076 ± 0.008^{d}	0.078 ± 0.005^{cd}	0.071 ± 0.004^{d}	0.094 ± 0.004^{abc}	0.104±0.012ª	0.098 ± 0.005^{ab}	0.074 ± 0.003^{d}	0.095±0.006 ^{ab}		

Table 2. Effect of different blue-red light ratio in LED lighting, selenium doses and their application time on mineral nutrients content of baby leaf lettuce. B10R90, B75R25 – a percentage of blue (B) and red (R) light. Se0, Se1, Se3 – selenium doses 0, 1, 3 ppm respectively. DAS – days after sowing. Means with different letters are significantly different at the P < 0.05 level by Tukey's honestly significant difference test.

Results – Se, BCF_{Se} , TF_{Se} <u>EXP1</u>

Figure 7. Effect of different blue-red light ratio in LED lighting and selenium doses on Se content, bioconcentration (BCF_{Se}) and translocation (TF_{Se}) factors of baby leaf lettuce. B10R90, B75R25 – a percentage of blue (B) and red (R) light. Se0, Se1, Se3 – selenium doses 0, 1, 3 ppm respectively. Means with different letters are significantly different at the P < 0.05 level by Tukey's honestly significant difference test.

Results – Se, BCF_{Se} , TF_{Se} <u>EXP2</u>

Figure 6. Effect of different blue-red light ratio in LED lighting, selenium doses and their application time on Se content, bioconcentration (BCF_{Se}) and translocation (TF_{Se}) factors of baby leaf lettuce. B10R90, B75R25 – a percentage of blue (B) and red (R) light. Se0, Se1, Se3 – selenium doses 0, 1, 3 ppm respectively. DAS – days after sowing. Means with different letters are significantly different at the P < 0.05 level by Tukey's honestly significant difference test.

Conclusions

The content of Se in lettuce was the highest at 3 ppm under both blue and red light ratios. However, such a dose of Se inhibited the growth of lettuce and reduced the rate of photosynthesis and chlorophyll content. When 1 ppm Se was applied at 17th DAS under B:R ratios 10B:90R%, lettuce accumulated lower Se content compared to the 11th DAS, but this did not have a negative effect on their growth. Overall, these results suggest that properly composed doses of Se, LED lighting and application time could be suitable way for cultivation of selenium-biofortified baby leaf lettuces without any adverse effects on growth.

This project has received funding from the Research Council of Lithuania (LMTLT), agreement No. S-MIP-19-2.

