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Abstract: We studied the possibility of using spectral parameters of open soil (Landsat 8 and Sen-

tinel 2 data) and machine learning methods for using, on a single field scale, refined maps of or-

ganic carbon content, available forms of nitrogen, phosphorus, and potassium, silt and clay frac-

tions. The accuracy of the obtained predictive maps of changes in soil properties was assessed in 

the aspect of their use for information support for the introduction of precision farming systems. It 

has been shown that the use of spectral reflectance data to refine digital maps provides a significant 

improvement in spatial prediction when using machine learning methods compared to traditional 

linear models. The content of SOC, available nitrogen, and available potassium is well predicted 

using the random forest (RF) and support vector regression (SVMr) models; the content of available 

phosphorus, silt and clay is somewhat worse. Refined digital maps based on Sentinel 2 data are 

characterized by a greater degree of detail in the spatial variability of soil parameters; at the same 

time, the use of Landsat 8 data can also be productive, since in some cases it provides higher ac-

curacy of the spatial prediction. 
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1. Introduction 

The need to increase the production of crop products while ensuring the minimum 

negative impact on the environment is the most important problem of the modern de-

velopment of society. One of the promising directions for solving this problem is con-

sidered the introduction of digital technologies for the variable application of mineral 

fertilizers in agricultural production [1]. These technologies are focused on the optimal 

satisfaction of the needs of cultivated plants in nutrients, taking into account the spatial 

heterogeneity of arable land in terms of agrochemical properties. Successful implemen-

tation of Precision Agriculture technologies requires an ultra-precise description of the 

spatial heterogeneity of soil cover properties, which must be scaled, in this case, at the 

level of a single crop rotation field. The solution to this problem requires, along with 

detailing the analytical study of soils, the use of modern methods of mathematical pro-

cessing of the data, based on the prediction of the formation of the spatial distribution of 

soil indicators [1, 2]. 

Recently, in this aspect, machine learning methods have been widely used, which 

make it possible to efficiently process materials of remote sensing of the Earth (RS). The 

use of approaches based on these methods can significantly improve the accuracy of 

digital maps of soil properties. The use of these methods can make it possible in the fu-

ture to provide, based on the prediction of changes in agrochemical indicators in space 
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and in time, the refinement of rough agrochemical maps created for traditional fertiliza-

tion, as well as to update outdated cartographic material. The possibility of a productive 

solution to this problem on the scale of one field (or several fields) will significantly sim-

plify and reduce the cost of obtaining digital maps of nutrients, which can be used in the 

development maps of variable rate application of fertilizers. Particularly attractive is the 

possibility of using remote sensing data available in open sources to refine agrochemical 

maps, which can also significantly reduce the cost and simplify the information support 

for the implementation of digital farming systems. 

The purpose of this work is to assess the possibility of using remote sensing data 

obtained from the Landsat 8 and Sentinel 2 satellites as predictors of spatial prediction of 

soil properties using machine learning methods. 

2. Materials and Methods 

The object of study was a field (254 ha) located on the territory of the Republic of 

Tatarstan (Russia) in the zone of distribution of chernozem soils. The site is characterized 

by a significant elevation difference (up to 60 m) with steep slopes and high heterogene-

ity of the soil cover in terms of fertility. The field was divided into elementary squares of 

about 5 hectares each, from which point soil samples (20-40 pcs.) were taken to compile 

mixed samples. In total, 50 mixed soil samples were taken, in which the content of 

available nitrogen, available phosphorus, and available potassium, soil organic carbon 

(SOC), silt, and clay were determined. The nutrients available to plants were determined 

on the basis of national standards, the SOC content was determined by dry combustion, 

and silt and clay fractions were determined by laser sedimentography. 

The remote sensing sources were data from publicly available satellites (Landsat 8 

OLI and Sentinel 2). Satellite images were obtained from the sites of the US Geological 

Survey and the European Space Agency. The selection of space satellites as potential data 

sources for spatial prediction of agrochemical properties of soils was based on their 

availability, openness, differences in the resolution, and the presence of a wide range of 

bands of the electromagnetic spectrum in space images. For the work, we used images 

with open soil, i.e. with minimal influence of vegetation. For Landsat 8 OLI, such condi-

tions corresponded to the image from 31/05/2019, for the Sentinel 2 satellite - the image 

from 12/05/2019. Space images were selected taking into account the minimum influence 

of atmospheric disturbances, however, all images were atmosphericallycorrected using 

the DOS 1 method. Then, spectral indices were calculated, which are represented by the 

ratios of individual bands and indices characterizing the open surface (NDVI, Grain size 

index, Clay index, MIR index, Bare soil index, Redness index, Saturation index, Colora-

tion index, etc.). The data of individual bands and spectral indices were extracted and 

averaged over the elementary sampling sites. Working with raster images and modeling 

was carried out in the environment of the object-oriented language R [3]. 

Linear models (MLR), support vector regression models (SVMr) and random forest 

(RF) were used as models. RF and SVMr models have been tuned. The models were 

validated using the bootstrap procedure, taking into account performance optimism [4]. 

The performance values of the models were calculated for individual samples of the 

bootstrap and then the performance of the model fitted to the original data was calcu-

lated. The value of optimism of predict was calculated by subtracting the average per-

formance values of the models of individual bootstrap samples and models based on the 

original data. The performance totals were considered values without optimism. RMSE, 

MAE, and R2 criteria were used to evaluate the models. The best models were those with 

a minimum value of RMSE, MAE, and a maximum value of R2. Subsampling of data for 

each model was carried out using Recursive Feature Elimination (RFE) from the caret 

package. For this, the importance scores were iteratively determined, ranked, and sub-

samples with the minimum importance scores were selected. For each type of model, the 

corresponding evaluation functions were used. 

3. Results and discussion 
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According to the data in Table 1, of the three types of models, the MLR models that 

had the minimum values of the coefficient of determination were recognized as the 

worst. The MLR model is inferior in the accuracy of spatial prediction for all indicators of 

soil properties, both when using remote sensing data from the Landsat 8 OLI satellite and 

the Sentinel 2 satellite. 

The RF and SVMr models best predict available nitrogen, potassium, and organic 

carbon. In the case of using the Landsat 8 OLI satellite data for available nitrogen for the 

RF model, RMSE = 9.21, and for the SVMr model, RMSE = 4.51, for the RF model, R2 = 

0.83, for the SVMr model, R = 0.95. A similar situation is observed for available potassi-

um, in which the SVMr model has lower RMSE and MAE values, as well as higher R2 

values than the RF model. For SOC for RF and SVMr models, the R2 has similar values 

(R2RF = 0.83 and R2SVMr = 0.82). When using more detailed Sentinel 2 satellite imagery, 

the RF model for available nitrogen and SOC shows the best results. For the RF model, 

available nitrogen has R2 = 0.85, and for SOC - R2 = 0.75. For available potassium the RF 

and SVMr models have close R2 values (R2RF = 0.74 and R2SVMr = 0.75). 

Table 1. Estimates of model performance. 

Property Model RMSE MAE R2 RMSE MAE R2 

  Landsat 8 OLI Sentinel 2 

Hydrolysable nitrogen 

MLR 11.00 0.86 0.69 12.38 0.92 0.60 

RF 9.21 0.28 0.83 8.51 0.47 0.85 

SVMr 4.51 0.64 0.95 8.91 0.23 0.79 

Available phosphorus 

MLR 47.62 4.19 0.12 48.96 4.29 0.07 

RF 33.71 1.39 0.66 34.62 3.10 0.65 

SVMr 33.39 6.80 0.57 35.26 7.83 0.52 

Available Potassium  

MLR 28.80 2.27 0.57 31.59 2.56 0.48 

RF 23.89 1.72 0.77 25.34 1.48 0.74 

SVMr 19.23 2.31 0.81 22.01 4.28 0.75 

SOC 

MLR 0.53 0.04 0.51 0.49 0.04 0.58 

RF 0.35 0.02 0.83 0.35 0.02 0.84 

SVMr 0.32 0.04 0.82 0.37 0.07 0.77 

Silt 

MLR 6.86 0.55 0.18 6.95 0.56 0.16 

RF 4.23 0.17 0.75 5.55 0.21 0.57 

SVMr 2.64 0.34 0.87 2.84 0.46 0.76 

Clay 

MLR 3.02 0.26 0.09 2.99 0.26 0.11 

RF 2.24 0.15 0.61 2.23 0.21 0.61 

SVMr 2.13 0.24 0.54 1.93 0.25 0.62 

Available phosphorus in soils is predicted significantly worse than other agro-

chemical properties, using both Landsat 8 OLI and Sentinel 2 data. In both cases, the best 

model for available phosphorus is the RF model, for the model with Landsat data R2 = 

0.66, with Sentinel 2 - R2 = 0.65. In general, acceptable results of spatial prediction of the 

content of available phosphorus by spectral reflectance can only be obtained using ma-

chine learning methods. 

Insufficient prediction is also typical for particle size distribution (PSD) of soils. The 

worst predicted of all indicators is the clay content, for which with Landsat data, R2 = 

0.61 in the RF model, and with Sentinel 2 data, R2 = 0.62.  Silt content is predicted better 

than clay content, for which the highest R2 is observed in the SVMr model for both 

Landsat (R2 = 0.87) and Sentinel 2 (R2 = 0.76) data. As in the case of assessing the spatial 

heterogeneity of the content of available phosphorus, an acceptable prediction of the 

content of PSD fractions can be provided only with the use of special procedures for us-

ing machine learning methods. 
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Machine learning models are increasingly being used in studies of the spatial dis-

tribution of soil properties. For example, a review by Wadoux et al. indicates that a large 

number of machine learning algorithms and their variants are used in the digital soil 

mapping (DSM) literature. The most common DSM currently used is the RF algorithm 

[5]. However, SVMr algorithms also find application for DSM. Stevens et al. along with 

other regression models used spectral-based SVMr models to analyze cropland SOC, 

which also showed high determination coefficients for at different scales [6]. Kovačević et 

al also pointed out the value of regional scale SVMr models for assessing clay and phys-

ical sand in soils, which were assessed based on the classification of soils. The coefficients 

of determination ranged from 0.36 to 0.76 depending on the model. The SVMr models 

had higher R2 values for SOM (R2 = 0.96), nitrogen (R2 = 0.85), and pH (R2 = 0.90) [7]. 

Deiss et al. noted that when using spectral data, nonlinear models (SVMr) outperformed 

linear models of sand, clay, pH, total carbon in soils in Tanzania and the US Midwest. 

The performance of the SVMr (R2) models varied within 0.57-0.94 depending on the soil 

property [8]. A similar pattern for all soil parameters was observed in our study. 

 

а) Landsat 8 OLI 

 

b) Sentinel 2 

Figure 1. Example of predictive maps of SOC content obtained using satellite data from Landsat 8 OLI (a) and Sentinel 2 

(b). 

The figure 1 shows, as an example, predictive maps of SOC content obtained using 

the Landsat 8 OLI and Sentinel 2 satellite data. A visual analysis of the refined maps 

shows that the maps based on Sentinel 2 are characterized by a greater degree of detail in 

the spatial variability of the studied soil property. Approximately the same pattern is 

observed in the refined maps of other soil properties. It is known that the Sentinel 2 data 

are more sensitive to local changes in soil parameters, in contrast to the Landsat 8 data, 

which have a coarser resolution. Similar conclusions were made in other works, for ex-

ample, when studying saline soils in China [9]. However, at the same time, it can be 

noted that when applying refined digital maps based on Earth remote sensing data from 

the Landsat satellite, the use of machine learning methods makes it possible to obtain a 

material with the required spatial prediction accuracy and detail that satisfies the infor-

mation support of the variable rate application of mineral fertilization 

4. Conclusions  

The use of spectral reflectance data to refine digital maps of SOC content, available 

forms of nitrogen, phosphorus, potassium, PSD fractions on a single field scale provides 

a significant improvement in prediction when using machine learning methods (RF and 

SVMr) compared to traditional linear models (MLR). When using the RF and SVMr 

models, the SOC, available nitrogen, and available potassium is well predicted; the con-

tent of available phosphorus and PSD fractions is somewhat worse. Refined digital maps 

based on Sentinel 2 data are characterized by a greater degree of detail in the spatial 



Proceedings 2021, 4, x FOR PEER REVIEW 5 of 5 

 

variability of soil parameters; at the same time, the use of Landsat data can using ma-

chine learning methods, make it possible to obtain maps that are sufficient in terms of 

spatial prediction accuracy for the requirements of digital farming. 
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