

Evaluation of chloride-ingress models on concrete bridge exposed to deicing salts

Marija Kušter Marić

University of Zagreb, Croatia <u>marijak@grad.hr</u> University of Stuttgart, Germany University of Rijeka, Croatia University of Zagreb, Croatia

Joško Ožbolt Gojko Balabanić Ivona Pavlica

CMDWC 2021

1st Corrosion and Materials Degradation Web Conference 17-19 MAY 2021 | ONLINE

OUTLINE

INTRODUCTION AND MOTIVATION

Corrosion of steel in concrete

- Major cause of deterioration of RC and PC bridges and service life reduction
- In the mountain area: average seasonal consumption of deicing salts for each separate carriageway on motorway (two lanes) is 62 t/km

De-icing salts

Maritime environment

INTRODUCTION AND MOTIVATION

INTRODUCTION AND MOTIVATION

Application of chloride ingress models on case studies

Life-365 Service Life Prediction Model™ for reinforced concrete exposed to chlorides

3D CHEMO- HYGRO-THERMO MECHANICAL MODEL

Modelling physical, electrochemical and mechanical processes:

- Transport of capillary water, heat, oxygen and chloride through the concrete cover
- Immobilization of chloride in the concrete
- Cathodic and anodic polarization
- Transport of OH- ions through electrolyte in concrete pores
- Mass sinks of oxygen on steel surface due to cathodic and anodic reaction
- Distribution of electrical potential and current density
- Transport of corrosion products in concrete and cracks
- Concrete cracking due to mechanical and non-mechanical actions

3D CHEMO- HYGRO-THERMO MECHANICAL MODEL

- □ Realistic environmental and structural conditions
 - Surface water and chloride contents variable in time based on the meteorological data
 - □ Wetting–drying cycles
 - Impact of concrete crack and damage on water and chloride penetration in concrete

Adsorption, desorption and scanning curves for a concrete

Water diffusivity & permeability as a function of the crack width

Ožbolt et al. (2010, 2016)

3D CHTM model: Initial phase of corrosion

$\rho_{w}\frac{\partial\theta_{w}(h)}{\partial t} = \rho_{w}\frac{\partial\theta_{w}(h)}{\partial h}\frac{\partial h}{\partial t} = \nabla \cdot \left(\delta_{v}(h)p_{v,sat}\nabla h\right)$ Wetting – drying cycles Changes in relative humidity 2 isotherms: desorption and adsorption Distribution of chlorides $\theta_{w} \frac{\partial C_{c}}{\partial t} = \left(\frac{\delta_{v}(h)}{\rho_{w}} p_{v,sat} \nabla h \cdot \nabla\right) C_{c} + \nabla \cdot \left(\theta_{w} D_{c}(\theta_{w}, T) \nabla C_{c}\right) - \frac{\partial C_{cb}}{\partial t}$ Diffusion + convection - binding by cement hydration product $\frac{\partial C_{cb}}{\partial t} = k_r \left(\alpha C_c - C_{cb} \right)$ $D_{c}(\theta_{w},T) = D_{c,ref} \left[1 + \frac{(1-h(w))^{4}}{(1-h_{c})^{4}} \right]^{-1} \cdot \exp\left[\frac{U}{R} \left(\frac{1}{T_{ref}} - \frac{1}{T} \right) \right]$ $\lambda \Delta T + W(T) - c \cdot \rho \frac{\partial T}{\partial t} = 0$ Distribution of temperature Hansen (1986 desorption isotherm (w/c = 0.48) adsorption isotherm (w/c = 0.48) 0 0.2 0.4 0.6 0.8 0 1 relative humidity [%] Ožbolt et al. (2016)

3D CHTM model: Microplane model for concrete

Ožbolt et al. (2001) Ožbolt et al. (2005)

3D CHTM model: chemo-hygrothermo-mechanical coupling

Assumption: diffusivity (D) & permeability (K) - function of the crack width

3D CHTM model: Numerical algorithm

Material data, FE mesh, initial and boundary conditions

Life-365

□ Chloride ingress in un-cracked concrete

□ Fick's second law

□ Diffusion as dominant transport processes

$$\frac{dC}{dt} = D \frac{d^2C}{dx^2}$$

- C chloride content
- D apparent diffusion coefficient
- x depth from the exposed surface
- t time.

□ Chloride diffusion coefficient is a function of time

$$D_{ref} = D_{28} = 1 \cdot 10^{(-12.06 + 2.40w/c)}$$
$$D(t) = D_{ref} \left(\frac{t_{ref}}{t}\right)^m$$
$$m = 0.2 + 0.4 \left(\frac{\% FA}{50} - \frac{\% SG}{70}\right)$$

Thomas & Bentz (2018)

Case study: Zečeva Draga Viaduct

Two twin structures Built in 2004 and 2007

Kušter Marić et al. (2020) Viadukt (2007)

Case study: Zečeva Draga Viaduct

Material parameters used in 3D CHTM

Modulus of elasticity of concrete, E_c (MPa)	32500.0
Tensile strength, f _t (MPa)	3.13
Uniaxial compressive strength, f _c (MPa)	51.57
Fracture energy, G _F (J/m ²)	80.0
Thermal conductivity, λ (W/mK)	2.10
Heat capacity per unit mass of concrete, c (J/kgK)	900.0
Mass density of concrete, ρ _{con} (kg/m ³)	2480.0
Mass density of water, ρ _w (kg/m³)	1000.0
Water volume in concrete at saturation, θ_{wd} (m ³ /m ³)	0.10
Initial concrete porosity, p _c	0.10
Water/Cement ratio, w/c	0.48
Amount of cement gel in concrete, W _{gel} (kg/m ³)	448.00
Equivalent hydration time period, t _e (days)	180.00
Chloride binding rate coefficient, k _r (s ⁻¹)	5.00x10 ⁻⁷
Chloride diffusion activation energy, U (kJ/mol)	44.60
Referent chloride diffusion coefficient in un-cracked concrete,	6.00x10 ⁻¹¹
$D_{c,ref,0} (m^2/s)$	
Water vapor permeability, δ_v (s)	7.00x10 ⁻¹¹

Microclimate parameters used in 3D CHTM

		WD1, WD2, WD3, Life365		WD1	WD2	WD3	noWD		
		T (°C)	h (%)	C _c (kg/m³)	C _c (kg/m³)	C _c (kg/m³)	T (°C)	h (%)	C _c (kg/m³)
	Ι.	1,0	82	9,00	12,00	20,00	10,2	77	4,60
Month	II.	2,0	78	9,00	12,00	20,00	10,2	77	4,60
	III.	6,0	73	6,00	8,00	13,00	10,2	77	4,60
	IV.	10,0	70	1,00	1,00	4,00	10,2	77	4,60
	V.	14,0	71	1,00	1,00	4,00	10,2	77	4,60
	VI.	18,0	72	0,00	0,00	0,00	10,2	77	4,60
	VII.	20,0	72	0,00	0,00	0,00	10,2	77	4,60
	VIII.	19,0	76	0,00	0,00	0,00	10,2	77	4,60
	IX.	15,0	80	0,00	0,00	0,00	10,2	77	4,60
	Χ.	10,0	82	1,00	1,00	4,00	10,2	77	4,60
	XI.	5,0	84	6,00	8,00	13,00	10,2	77	4,60
	XII.	2,0	84	9,00	12,00	20,00	10,2	77	4,60

Comparison of numerical and measured chloride content

Comperison of surface chloride contents and effective diffusivity

	11 years of exposure										
			L	ife36	5	3D CHTM					
		Surface chlo (m _c +m _{cb})/n	oride content n _{concrete} [%]		Chloride diffusion coeficient $[x10^{-11} m^2/s]$		Surface chloride content (mc+mcb)/mconcrete [%]				Chloride diffusion coeficient [x10 ⁻¹¹ m ² /s]
	Minimum value	Mean value	Max. value	Standard deviation	Mean value	Mean Standard value deviation		Mean value	Max. value	Standard deviation	
$\begin{array}{c} WD1\\ cw \leq 0.05 \ mm \end{array}$	0,060	0,168	0,240	0,069	180	24	0,0652	0,1219	0,2700	0,1141	6
WD1 cw = 0.10 mm	0,100	0,154	0,260	0,052	212	118	0,0652	0,1219	0,2700	0,1141	380
WD1 cw = 0.15 mm	0,170	0,170	0,170	0	830	0	0,0652	0,1219	0,2700	0,1141	4002
WD1 cw = 0.20 mm	0,110	0,133	0,155	0,023	2400	600	0,0652	0,1219	0,2700	0,1141	6000
$WD2 \\ cw \le 0.05 mm$	0,135	0,205	0,275	0,057	99	29	0,0784	0,1604	0,3598	0,1528	6
WD2 cw = 0.10 mm	0,158	0,173	0,190	0,014	242	64	0,0784	0,1604	0,3598	0,1528	380
WD2 cw = 0.20 mm	0,200	0,200	0,200	0	700	0	0,0784	0,1604	0,3598	0,1528	6000
$WD3 \\ cw \le 0.05 mm$	0,280	0,308	0,350	0,026	107	16	0,1897	0,2803	0,6012	0,2496	6
WD3 cw = 0.10 mm	0,155	0,174	0,210	0,017	956	437	0,1897	0,2803	0,6012	0,2496	380
WD3 cw = 0.15 mm	0,230	0,230	0,230	0	18000	0	0,1897	0,2803	0,6012	0,2496	4002

Surface chloride concentration and concrete diffusivity are determined separately for each chloride profile.

Surface chloride concentration depends on exposure level (WD1-3), while difusivity depends on crack width (cw=0.0-0.2)

Comperison of surface chloride contents and effective diffusivity

		14 years of exposure											
			L	ife365			3D CHTM						
		Surface chlo (mc+mcb)/r	oride content m _{concrete} [%]		Chloride diffi [x10]	usion coeficient ¹¹ m ² /s]	Surface chloride content $(m_c+m_{cb})/m_{concrete}$ [%]				Chloride diffusion coeficient [x10 ⁻¹¹ m ² /s]		
	Minimum value	Mean value	Max. value	Standard deviation	Mean value	Standard deviation	Minimum value	Mean value	Max. value	Standard deviation			
$ WD1 \\ cw \le 0.05 mm $	0,090	0,112	0,130	0,016	200	0	0,0652	0,1219	0,2700	0,1141	6		
$\frac{WD1}{cw = 0.10 \text{ mm}}$	0,102	0,119	0,135	0,017	365	15	0,0652	0,1219	0,2700	0,1141	380,626		
WD1 cw = 0.15 mm	0,135	0,140	0,145	0,004	1700	294,39	0,0652	0,1219	0,2700	0,1141	95910		
WD1 cw = 0.20 mm	0,110	0,148	0,180	0,029	2233	1958	0,0652	0,1219	0,2700	0,1141	6000		
WD2 $cw \le 0.05 \text{ mm}$	0,102	0,121	0,135	0,013	282,5	83,179	0,0784	0,1604	0,3598	0,1528	6		
WD2 cw = 0.10 mm	0,105	0,143	0,200	0,037	542,5	297,35	0,0784	0,1604	0,3598	0,1528	380,626		
WD2 cw = 0.15 mm	0,185	0,202	0,235	0,024	1183	447,83	0,0784	0,1604	0,3598	0,1528	95910		
WD2 cw = 0.20 mm	0,137	0,144	0,153	0,009	30000	0	0,07/84	0,1604	0,3598	0,1528	6000		
WD3 $cw \le 0.05 \text{ mm}$	0,155	0,189	0,235	0,029	832,5	403,32	0,1897	0,2803	0,6012	0,2496	6		
WD3 cw = 0.10 mm	0,185	0,210	0,235	0,025	1025	475	0,1897	0,2803	0,6012	0,2496	380,626		
WD3 cw = 0.15 mm	0,260	0,330	0,400	0,070	2975	2025	0,1897	0,2803	0,6012	0,2496	95910		

Surface chloride concentration and concrete diffusivity are determined separately for each chloride profile.

Surface chloride concentration depends on exposure level (WD1-3), while difusivity depends on crack width (cw=0.0-0.2)

Impact of wetting-drying cycles and concrete crack on chloride content on the reinforcement level

Kušter Marić et al. (2020)

CONCLUSION

REFERENCES

- Kušter Marić, M, Ožbolt J., Balabanić G., Zhychkovska O., Gambarelli S. (2020). Chloride Transport in Cracked Concrete Subjected to Wetting – Drying Cycles: Numerical Simulations and Measurements on Bridges Exposed to De-Icing Salts. Frontiers in Built Environment 6, 163. doi:10.3389/fbuil.2020.561897
- □ Kušter Marić, M., Ožbolt, J., and Balabanić, G. (2020). Reinforced concrete bridge exposed to extreme maritime environmental conditions and mechanical damage: measurements and numerical simulation. Eng. Struct. 205:110078. doi: 10.1016/j.engstruct.2019.110078
- Ožbolt, J., Balabanić, G., Periškić, G., and Kušter, M. (2010). Modelling the effect of damage on transport processes in concrete. Constr. Building Mater. 24, 1638–1648. doi: 10.1016/j.conbuildmat.2010.02.028
- Ožbolt, J., Oršanić, F., and Balabanić, G. (2016). Modeling influence of hysteretic moisture behavior on distribution of chlorides in concrete. Cement Concrete Compos. 67, 73–84. doi: 10.1016/j.cemconcomp.2016.01.004
- □ Viadukt Zagreb(2007) <u>Zečeva Draga viaduct || vijadukt Zečeva Draga YouTube</u>
- Thomas MDA, Bentz EC (2018) Life-365 Service Life Prediction Model and Computer Program for Predicting the Service Life and Life-Cycle Cost of Reinforced Concrete Exposed to Chlorides Version 2.2.3 September 28, 2018. University of Toronto

ACKNOWLEDGMENTS

CROCANDY

Durability of reinforced concrete structures - Croatian and Canadian practices

This research was carried out in the framework of two projects: (i) the joint Canadian—Croatian research project "Durability of reinforced concrete structures-Croatian and Canadian practices (CROCANDY)," financed by the Prof. Dr. Sc. Jasna Šimunić-Hrvoić Foundation and supported by University of Toronto-Faculty of Applied Science & Engineering, University of Zagreb-Faculty of Civil Engineering, and Rijeka-Zagreb Motorway, and (ii) the UKF project 04/17 "Influence of concrete damage on reinforcement corrosion—computer simulation and in-service performance of bridges (CODEbridges)" co-funded by Unity through Knowledge Fund (UKF), University of Stuttgart and University of Zagreb. The academic mobility among the authors was co-funded by University of Zagreb Faculty of civil Engineering through academic mobility program in 2019.

The authors wish to express their gratitude to Prof. Dr. Sc. Jasna Šimunić-Hrvoić Foundation, Unity through Knowledge Fund (UKF) and included universities for their support. They would like to thank the Rijeka-Zagreb Motorway for transfer of the bridge maintenance data and their support in the projects.

UNIVERSITY OF ZAGREB FACULTY OF CIVIL ENGINEERING Thank you for your attention!

Evaluation of chloride-ingress models on concrete bridge exposed to deicing salts

Marija Kušter Marić

University of Zagreb, Croatia <u>marijak@grad.hr</u> University of Stuttgart, Germany University of Rijeka, Croatia University of Zagreb, Croatia

Joško Ožbolt Gojko Balabanić Ivona Pavlica

CMDWC 2021

1st Corrosion and Materials Degradation Web Conference 17-19 MAY 2021 | ONLINE