

Abstract

CuO-Doped Alginate for Simple Electrochemical Vitamin C Sensing in Sweat ⁺

Bergoi Ibarlucea ^{1,2,*}, Arnau Perez Roig ¹, Dmitry Belyaev ¹, Larysa Baraban ^{1,2} and Gianaurelio Cuniberti ^{1,2}

- ¹ Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany
- ² Center for advancing electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany
- * Correspondence: bergoi.ibarlucea@tu-dresden.de
- + Presented at the 8th International Symposium on Sensor Science, 17–26 May 2021; Available online: https://i3s2021dresden.sciforum.net/.

Published: date

Abstract: Heat-exposed work activities or prolonged sport sessions suppose a continuous nutrient loss through sweating, leading to long-term health issues. Among prevention steps, the use of miniaturized sensors for real time monitoring of micronutrient presence directly in sweat can be of great interest. Here, we propose a flexible sensor for detection of Vitamin C (ascorbic acid), based on a very simple process of electrode modification via electrodeposition of a membrane containing CuO nanoparticles. The reductive effect of ascorbic acid on the nanoparticles produces a shift of the redox peaks in cyclic voltammetry analysis, which can be measured at nearly zero volts as a current increase by amperometry. The detection is performed efficiently at the micromolar ascorbic acid levels found naturally in sweat and works at ultra-low potential (-5 mV), showing no interferences with other typical molecules found in the samples. In combination with sensors for other nutrients, this can be a promising approach for preventive healthcare applications.

Keywords: ascorbic acid; Vitamin C; electrochemical detection; biosensor; copper oxide nanoparticles