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Abstract: This study presents the spatio-temporal assessment of the Pugllohuma peatland’s surface 
variability, a highland wetland (over 4100 m.a.s.l.) in the Sustainable water conservation area 
Antisana, Ecuador. This assessment provided information of the surface variability during dry and 
wet season. The temporal variability was investigated through the pressure, rain, relative humidity, 
temperature, and wind, records of two near meteorological stations, while the spatial variability 
was investigated through images of the Sentinel-1 mission from 2017 to 2019, as well as, elevation 
and slope data. Their classifications were carried out by using R programming language and Google 
Earth Engine, and the results were published in the UI service in Google Apps Script. 
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1. Introduction 

The study of environmentally sensitive areas and their ecosystem services is relevant worldwide 
because of their importance in anthropic interests and activities. The Pugllohuma peatland is in the 
Mica Quito-Sur system, which is one of the four water collection systems used in Quito, city and 
capital of Ecuador, and its conservation influences the hydrological cycle of the water that reaches 
Quito’s drinking water network [1]. Commonly, the use of optical images was obstructed by cloud 
cover and volcanic plumes [2,3]. Therefore, the current research used radar images to detect changes 
in the peatland’s land surface water from 2017 to 2019, and the radar image classification process was 
developed by decision trees to perform supervised classifications [4,5]. Thereby, the building of 
supervised classification models showed that Pugllohuma peatland’s space-time changes are 
governed by the day of the year, terrain elevation, atmospheric temperature, and precipitation. So, 
the soil drought season takes place in January, February, and March, whereas high water tables were 
frequent from June to September, and from November to December. Finally, the area of interest 
showed its seasonal changes around the following distribution of the land classes: 170 ha of dry soil, 
17 ha of moist soil, and 7 ha of soil near saturation.  

2. Materials and Methods 
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The developed methodology pretended to take advantage of the local weather datasets and the 
Sentinel-1 imagery for assessing the changes in land surface water of Pugllohuma peatland. Figure 1 
shows a flowchart highlighting the key steps and datasets used. This workflow involves three 
primary steps, which included the use of correlation matrices, plots of OOB errors against number of 
treess, as well as the Mean Decrease Accuracy and Mean Decrease Gini index to build and assess the 
classification models. 

1. Generation of temporal supervised classification using R Studio. 
2. Imagery selection and pre-processing using Google Earth Engine. 
3. Generation of spatial supervised classification using Google Earth Engine. 

Firstly, the temporal supervised classification was used to classify the extreme dry and wet 
events in the peatland, based on water table and weather registers [6–8]. Later, the dates of extreme 
events were used in the imagery selection, which pixel values were correlated to land water, flooded 
vegetation and roads surfaces. Finally, the backscattering, terrain data and the day of the year of the 
imagery were used to classify the land variability in the Pugllohuma’s peatland from 2017 to 2019 [9].  
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Figure 1. Workflow of Pugllohuma peatland’s surface spatio-temporal supervised classification: (a) 
Temporal classification. (b) Spatial classification. The parallelograms are used for data, rectangles for 
activities, diamonds for decisions, and rounded rectangles for products. 

3. Results 

3.1. Extreme events 

While collecting weather samples for the classification, it was observed that wet extreme events 
occur frequently from April to June and from October to December. Oppositely, the dry extreme 
events are frequently registered in January, February, July, August, and September. The main 
variables for identifying extreme events were the day of the year, atmospheric temperature, rain, and 
elevation of the terrain. In Figure 2, it is observed that the classification results were inconsistent with 
the seasonality in samples. So, it was preferred to use the results which predicted class probability is 
above 0.6.  

 
Figure 2. Temporal distribution of the dry and wet events. 

3.2. Spatio-temporal classification time series 

The temporal variation of the dry and wet soil, as well as the saturated soil, may be observed in 
Figure 3, Figure 4, and Figure 5, which top events are highlighted in grey. The time series of soil 
classification show remarkable seasonal variations in dry soil, and less clear seasonal variations in 
wet and saturated soil. It was discerned that the water presence in the peatland is related to the 
weather extreme events. Extreme events in the peatland surfaces occurs after weather extreme events. 
So, the peatland is dry from January, to March, and it is wet from June to September and from 
November to December. Beside, the time series locate the seasonal changes in the center and south 
of the wetland, eventual changes in the south of the wetland, and the permanent accumulation of 
water zones with more vegetation.  
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Figure 3. Evolution of the spatio-temporal classification of dry soil. 

 
Figure 4. Evolution of the spatio-temporal classification of wet soil. 

 

Figure 5. Evolution of the spatio-temporal classification of soil at or near saturation. 

3.3. Verifying Results 

The comparison between supervised and unsupervised classifications indicates that using radar 
images is not effective when evaluating the spatial distribution of classes on surfaces smaller than 20 
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ha due to the correction required for radar images by speckle. Besides, the results of both 
classifications can be similar in 70 % of the surface. So, the results of the spatio-temporal model have 
less uncertainty when the peatland is made up of 170 ha of dry soil, 17 ha of moist soil, and 7 ha of 
soil close to saturation. However, the maps of the supervised classification show sharper boundaries 
between classes than those presented in the unsupervised classification. The difference between both 
results denotes the sensitivity of optical sensors to changes in vegetation and the sensitivity of radar 
sensors to topographic changes due to the water content in the Andean vegetation and soil shapes. 
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