

Abstract

Possibility Non-Invasive Detection Magnetic Particles in Biological Objects ⁺

Levan Ichkitidze ^{1,2,*}, Mikhail Belodedov ³, Alexander Gerasimenko ^{1,2}, Dmitry Telyshev ^{1,2} and Sergei Selishchev ²

- ¹ Institute for Bionic Technologies and Engineering of I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russian
- ² Institute of Biomedical Systems of National Research University of Electronic Technology "MIET", Zelenograd, 124498 Moscow, Russian
- ³ Bauman Moscow State Technical University, 105005 Moscow, Russian
- * Correspondence: <u>ichkitidze@bms.zone</u>
- + Presented at the 8th International Symposium on Sensor Science, 17–26 May 2021; Available online: https://i3s2021dresden.sciforum.net/.

Published: date

Abstract: We evaluated the minimum concentration and minimum size of magnetic particles (MPs) within which modern ultra-sensitive magnetic field sensors (MFS) can detect them. Calculations showed that magnetite MPs with specific magnetization with characteristic sizes of \geq 50 nm and a concentration of CV ~ 0.1 vol.% Can be detected at a distance $l \le 0.1$ mm using MFS with a magnetic field resolution of SB \geq 1nT. However, at such a close distance it is impossible to non-invasively approach the biological object of study. On the other hand, the same MPs are easily detected at $l \leq$ 30 mm using supersensitive MFS based on the phenomena of superconductivity (SQUID) or superconductivity and spintronics (combined MFS (CMFS)). These sensors require cryogenic operating temperatures (4-77 K), and SB ~ 10-100 fT are realized in them. Note that superparamagnetic particles or carbon nanotubes (CNTs) can also be non-invasively detected by SQUID or CMFS sensors, assuming that their concentration in the material is $CV \ge 0.0000001$ vol.%. It is believed that CNTs may contain catalytic iron particles or encapsulated magnetic nanoparticles in nanotubes. Thus, modern supersensitive magnetic field sensors with SB \leq 100 fT make it possible to detect MPs in nanoscale, submicron, and micron sizes in biological objects. They can be used for non-invasive control of organs, implants, prostheses and drug carriers in the necessary parts of the body. Particularly important is the non-invasive control of CNTs in functional biocompatible nanomaterials, which have good prospects for widespread use in medical practice.

Keywords: magnetic particles; magnetic field sensor; magnetic field resolution; carbon nanotubes