

Hafnium Zirconium Oxide Thin Films for CMOS Compatible Pyroelectric Infrared Sensors

8th International Symposium on Sensor Science

C. Mart, <u>M. Czernohorsky</u>, K. Kühnel, W. Weinreich Fraunhofer Institute for Photonic Microsystems

> malte.czernohorsky@ipms.fraunhofer.de www.ipms.fraunhofer.de

Pyroelectricity

Overview

Pyroelectricity

Overview

Doped hafnium oxide: A brief history

 [1] J. Valasek Physical Review 17.4 (1921)
 [3] K Mistry et al., IEDM 2007

 [2] E. Kisi et al. J. Am. Ceram. Soc. 72 (1989)
 [4] J. Müller et al., IEDM 2013

8th International Symposium on Sensor Science

Pyroelectric Infrared Sensors

Working principle

 The pyroelectric effect corresponds to a polarization change upon temperature variation

 The generated current is proportional to the rate of temperature change

Infrared Sensor development steps

Pyroelectric sensor technology

Manufacturing process

- Area-enhanced substrate with 3D structures is used to enhance the pyroelectric response by approx. 20x
- MEMS post-processing forms a thin membrane with reduced heat capacity for fast response
- A further MEMS step isolates the sensor area thermally from the body via "fingers"
- A plasmonic absorber array is formed in the metallization layer
- 300mm technology with i-Line lithography

3D integration of doped HfO₂ thin films

- Pyroelectric material: 20 nm thick, 4 mol% Si-doped HfO₂ with Al₂O₃ interlayer ("nano-laminate")
- The conformal coating of the 3D structures is confirmed

Electrical characterization

Ferroelectric properties

- Ferroelectric polarization of doped HfO₂ on area-enhanced 300mm substrate with 532 dies.
 - HfZrO₂ exhibits a improved uniformity and larger remanent polarization, up to 331 µC cm⁻²
 - Specific area of 11.3 to 15.0 compared to planar results by 3D integration
- Low defect density, >99% functional devices

Pyroelectric characterization

- Pyroelectric measurement is performed by sinusoidal temperature variation ("Sharp-Garn method")
- Although the remanent polarization is smaller, Si-doped HfO₂ realizes larger pyroelectric current amplitudes

	Si-doped HfO ₂	Hf _{0.5} Zr _{0.5} O ₂
Virtual pyroelectric coeffiient	-1039 μCm ⁻² K ⁻¹	-475 μCm ⁻² K ⁻¹
Dielectric permittivity	36.9	37.8
Aging coefficient	-5.7 %/dec.	-3.6 %/dec.

Combining 3D integration and antiferroelectricity

- By tuning the Si doping content higher, antiferroelectric behavior is stabilized
- Very large pyroelectric coefficients by combining area enhancement and AFE enhancement
 p = -2400 µC/m²K

8th International Symposium on Sensor Science

IR Sensor Test

- The sensor current is amplified and converted to a voltage
- The manufactured sensor element produces a signal which is proportional to the amplitude of the incident infrared light

Thank you for listening!

Contact:

clemens.mart@ipms.fraunhofer.de

www.ipms.fraunhofer.de

The work in this presentation was supported by funding from the European Regional Development Fund (EFRE) and the Free State of Saxony (Project CONSIVA, No. 100273858).

