Modulating the antigen density on the surface of peptide nanofibrils by molecular co-assembly
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+  Peptides with the ability to self-assemble into defined nanoparticles have gained increase ® The MZ2e epitope derived from the matrix 2 protein of the influenza virus was

Interest for the design of antigen delivery platform for subunit vaccines [1].

By modulating the primary sequences and the self-assembly conditions, the shape, size
and surface chemistry of the supramolecular structures can be precisely modulated,
opening to a diversity of immunological functionalities [2].

We recently reported that nanofilaments assembled from a short 10-mer amyloidogenic
sequence (110) derived from the islet amyloid polypeptide (IAPP) constitute promising
assemblies suitable for anchoring antigenic determinants and Increasing their
Immunogenicity [1].

In the present study, we took advantage of non-covalent molecular self-assembly to
Integrate different densities of antigens on the fibril surface Iin a controlled manner by
adjusting the stoichiometry of the different building blocks.
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conjugated to 110 by a flexible short linker on solid support to obtain M2e-110.

Chimeric M2e-110 peptides were assembled in presence of different molar ratio of
110 under continuous rotary agitation in Tris buffer, pH 7.5.

Structural conversion of the soluble peptides into cross-p-sheet filaments was
followed by thioflavin T (ThT) and anilinonaphthalene-8-sulfonic acid (ANS)
fluorescence, circular dichroism spectroscopy and atomic force microscopy
(AFM).

The density of the M2e epitope accessible on the fibril surface was evaluated by
the enzyme-linked immunosorbent assay (ELISA).

The capacity of the cross-B-sheet assemblies to activate the Toll-like receptor 2
(TLR2) was evaluated using HEK-Blue-nTLR6/TLR2 cells that have a NF-xB-
Inducible reporter gene SEAP (secreted embryonic alkaline phosphatase).
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Figure 1: Biophysical characterization of the co-assembly of 110 and M2e-110 (10:1) into nanofilaments. Kinetics of the self-assembly was evaluated by (a) ThT fluorescence, (b)
ANS fluorescence, (c) and circular dichroism spectroscopy. (d) Representative AFM images of the nanofilaments assembled from 110 (left), M2e-110 (right) and at the molar ratio

of 10:1 (110:M2e-110), assembled for 96 h under continuous rotation.
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Figure 2 : Co-assembled nanofilaments show different antigens densities
on their surface. Nanofilaments were absorbed at different concentrations
to the bottom of a 96-well plate, then the density of the antigen exposed on
the surface was monitored by ELISA, using an anti-M2e antibody (14C2)
diluted to 1/500 as a primary antibody, and a anti-lgG coupled to HRP
diluted to 1/10 000.

cells were stim

Conclusion

This study Indicates that the density of a given epitope and other bioactive
molecules on the nanofibril surface can be precisely controlled through
molecular co-assembly, ultimately fine regulating the amplitude of the
Immune responses.
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Figure 3 : Nanofilaments activate the innate immune receptor TLR2/6. HEK-Blue hTLR2-TLRG6

ulated for 16h with increasing concentrations of nanofilaments (ranging from 3.125

to 50 uM), 100 pg/ml M2e peptide, 100 ng/ml Pam2CSK4 or with the vehicle control (50 mM Tris
buffer pH 7.5).
and spectroscopy at 635 nm.

NF-kB-induced SEAP activity was quantified using HEK-Blue detection medium
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