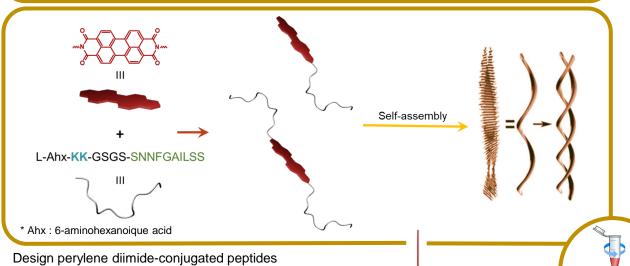
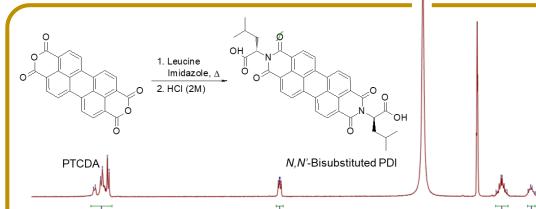
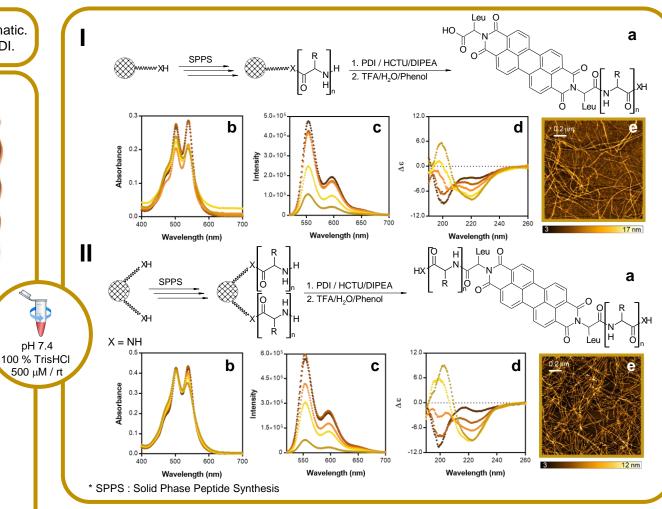
Synthesis and self-assembly of perylene diimide-conjugated peptides


Nadjib Kihal^{1,2}, Ali Nazemi¹ and Steve Bourgault^{1,2}


¹ Department of Chemistry, Université du Québec à Montréal, QC, Canada. // ² Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO

pH 7.4

Introduction


Control the directionality of PDI self-assembly into defined nanostructures remains problematic. We exploited the properties of amyloid peptides to design nanofilaments functionalized with PDI.

- * PTCDA: Perylenetetracarboxylic dianhydride
- * PDI : Perylediimide

Synthesis of *N,N'*-bisubstited PDI and ¹H-RMN spectra (400 MHz, d₆-DMSO).

Synthesis (a), UV-vis (b), fluorescence emission (c), ultraviolet range CD (d) spectra AFM images (e) of PDI- I_{20-29} (I) and PDI- I_{20-29} (II) incubated in Tris Buffer, pH 7.4, at a concentration of 500 μ M and under continuous agitation at 0 h, and after 24 h, 48 h, 72 h, and 1 week incubation.

Conclusion

Defined nanostructures functionalized with PDI can be obtained from amyloid peptide building blocks, opening to novel applications in bioimaging, photodynamic therapy and bioelectronic.