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Abstract: This study examined the water budget of Hurricane Irma (2017) through a Lagrangian
approach. To identify the moisture sources for the Hurricane Irma genesis and intensification the
particle dispersion model FLEXPART was used. The North Atlantic Ocean between 15° and 30°
North latitude and the South Atlantic Ocean were identified as the main moisture sources for Irma
development. From the perspective of the water budget, the maximum accumulated precipitation
along Irma's trajectory coincides with the maximum water budget efficiency, which suggests that
total precipitation depends largely on the water vapour supplied, rather than the storm intensity.
Furthermore, the moisture supplies from the surface under the area delimited by hurricane size is
small, thus, the water vapour supplies from the environment through the secondary circulation
transports more moisture inward.
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1. Introduction
Tropical cyclones (TCs) are one of the natural hazards that annually cause major

disasters worldwide, including many human deaths and large economic losses due to
the  increasing  populations  in  coastal  regions  and  the  increasing  economic  value  of
infrastructures [1]. 

Among others factors, TCs formation requires moist layers at mid-troposphere to
enhance  thunderstorm  formation  [2,3].  Thus,  the  cyclone  scale  circulation  provides
moisture for cumulus development, and the latent heat release in cumulus clouds drives
the cyclone circulation in return. Several author [4-10] have investigate the role of the
atmospheric humidity in TC development. There are several methods to investigate the
origin of moisture (e.g., Eulerian, and Lagrangian). A further review and comparison of
the different approaches used to study moisture transport may be found in Gimeno et al.
[11]. 

Although there have been many observational and modeling studies of TCs, and the
Lagrangian diagnostic scheme has proved to be a powerful tool to identified moisture
sources and study anomalous atmospheric moisture transports [12,13], the TCs’ water
budgets through a Lagrangian approach has been poorly studied. Thus, in this study we
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aim to investigate the water budget of North Atlantic Hurricane Irma (2017) using the
Lagrangian analysis
1.1 Hurricane Irma (2017)

The Hurricane Irma (2017) was formed from a tropical wave at 0000 UTC 30 August
[32]. While moving westward to the south of a mid-level ridge over the eastern Atlantic,
Irma strengthened rapidly in environmental conditions of low vertical wind shear and a
fairly  moist  lower  troposphere  while  it  was  over  marginally  warm  sea  surface
temperature (SST). Only 48 h after genesis, Irma  reached the major hurricane strength
(category +3 hurricane on Saffir – Simpson  scale) at 0000 UTC 1st  September. The RI
process (130 km/h in 48 h) undergo by Irma is a remarkable rate that has only achieved
by a small fraction of Atlantic tropical cyclones [14]. 

The hurricane  reached its  maximum intensity  of  286 km/h around 1800 UTC 5
September. As a category 5 hurricane, Irma made landfall on Barbuda and St. Martin
around  0545  UTC  and  1115  UTC  6  September,  respectively.  About  1630  UTC  6
September Hurricane Irma made its third landfall on the island of Virgin Gorda in the
British Virgin Islands as category 5 hurricane [14]. Irma again made landfall on Little
Inagua Island in the Bahamas at 0500 UTC 8 September category 4 intensity. Irma then
turned slightly to the left, due to a building subtropical ridge, and moved toward the
northern coast of Cuba and made the fifth landfall near Cayo Romano, Cuba, at 0300
UTC 9 September, with estimated maximum winds of  270 km/h. 

The land interaction of the storm circulation in its movement along the northern
coast of Cuba led to Irma weakening to a category 2 hurricane, however, the movement
over warm waters in the Straits of Florida allowed that the hurricane re-intensified once
again before making landfall for the sixth time near Cudjoe Key in the lower Florida
Keys around 1300 UTC 10 September  [14].  Finally,  Irma dissipated  at  1200 UTC 13
September.

2. Material and Methods
2.1 Data

The information of the Hurricane Irma was obtained from the Atlantic hurricane
database (HURDAT2)[15], available online at the National Hurricane Center (NHC) of
the United States of America web page. This dataset is a re-analysis effort to extend and
revise the NHC’s North Atlantic hurricane dataset (HURDAT).

The rain rate from the Global Precipitation Measurement (GPM) [16] was used. In
this  dataset,  the  precipitation  is  estimated  from  the  various  precipitation-relevant
satellite passive microwave sensors comprising the GPM constellation, computed using
the Goddard Profiling Algorithm. This dataset is merged into half-hourly 0.1°x 0.1° of
latitude and longitude horizontal resolution.
2.2 FLEXPART simulations

Global outputs from a modeling experiment using the FLEXPART v9.0 [17] were
utilized to investigate the Hurricane Irma water budgets from 0000 UTC 30 August to
1200  UTC  13  September  2017.  Initially,  the  model  considers  the  atmosphere
homogeneously  divided  into  approximately  2  million  particles  (the  number  of  air
particles  that  must  be  higher  than  the  meteorological  model  levels)  uniformly
distributed  over  the  entire  globe  and  permits  one  to  track  them  backward  and/or
forward in time. 

In this study, the particles residing over the area enclosed (target region) by the outer
radius  of each Hurricane Irma best track position were tracked backward in time up to 10
days; which is considered the residence time of the water vapour in the atmosphere [18]. 
2.3 Methodology
2.3.1 Lagrangian water budget formulation
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 Following Stohl and James [12],  the net change of the water vapour content of a
particle is estimated as:

(e− p )=m( dqdt ) (1)

where e and p are the rates of moisture increases and decreases along the trajectory, m is
the mass of each particle assumed as constant and q is the specific humidity. Furthermore,
to  computed the  surface  freshwater  flux over  an area  A, the  moisture  changes  of  all
particles in the atmospheric column over A are computed as:

(E−P )=

∑
k=1

N

(e− p )k

A
(2)

where N is the number of particles residing over A. To identify the moisture source, the
regions where the total  evaporation (E)  exceeds the total  precipitation (P)  should be
selected, so only those regions showing (E − P) >  0 values are taken into account.  We
consider here that the moisture uptake (E-P > 0) is the net water vapour flux that arrived
at the target region at each position every 6-h of the Hurricane Irma best track, and in its
calculation is not included the precipitation over the target region.

3. Results and Discussion
3.1 Identification of the moisture sources for hurricane Irma genesis and intensification

The  moisture  uptake  composite  from  0000  UTC  30  August  to  1200  UTC  13
September  reveals  the  moisture  sources  for  hurricane  Irma  (2017)  genesis  and
intensification. Clearly, from Figure 2 we identified the eastern North Atlantic along the
northwest coast of Africa, from the Iberian Peninsula to the genesis position, and the
Sahel region, as the main moisture sources that favored the activation of the convection
when Irma was  still  a  tropical  disturbance  embedded in  an easterly  wave [14].  The
circulation  of  the  North  Atlantic  Subtropical  High-Pressure  system (NASH) and the
easterly winds acted as the moisture transport mechanisms from the source regions to
the genesis location.

Figure 1. Moisture uptake composite along the Hurricane Irma trajectory from 0000 UTC 30 August to 1200
UTC 13 September.
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Along the trajectory of Hurricane Irma, the easterly winds and the trade winds
continued  supplying  atmospheric  humidity  to  TC,  which  favored the  intensification
processes.  Furthermore, the South Atlantic Subtropical  High-Pressure system (SASH)
transport water vapour from the South Atlantic Ocean to the Caribbean Sea, and then,
the easterly winds move it towards Irma position. Additionally, the Caribbean Sea and
the Gulf of Mexico contributed the atmospheric humidity required by Irma to keep the
deep convection and warm core by releasing latent heat. Nevertheless, the band between
15° and  30°  North latitude  over  the  Atlantic  Ocean  exhibits  the  greatest  moisture
contribution for Irma development. At the end of Irma's lifetime over the southeastern
United States, we assume that a recycling process played an important role in moisture
supplying. These findings are supported by the vertical integrated moisture flux pattern.

3.2 Precipitation rate spatial distribution
Figure  2  shows  the  precipitation  rate  from  GPM  along  the  Hurricane  Irma

trajectory. Although Irma was already a major hurricane just 48 hours after the genesis,
the intensity of the precipitation was less than 8 mm/h during the initial lifetime. This
features may be linked to the fact that the inner core was quite compact at this time, with
an estimated extension of 40 km [14]. 

After the hurricane reached its maximum intensity close to the islands at north of
the Lesser Antilles Arc, the intensity of precipitation increased to be maximum higher
than 36 mm/h during its movement along the North coast of Cuba, the Straits of Florida.
and  the  Florida  Peninsula,  as  shown  in  Figure  2.  At  this  time,  the  most  intense
precipitation  rates  nuclei  were  located  towards  the  northeast  (NE)  quadrant  of  the
storm, coinciding with the regions with the highest moisture uptake, as can be easily
verified in Figures 1 and 2.

Figure 2.  Rain rate from GPM composite along the Hurricane Irma trajectory from 0000 UTC 30 August to 1200
UTC 13 September.

As Cangialosi et al. [14] pointed out , Irma produced very heavy rainfall across a
central-eatern  portion  of  Cuba  and  over  the  large  portion  of  Florida  Peninsula,  the
accumulated rainfall ranging from 250 to 380 mm.
3.3 Moisture uptake vs rain rate
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From Figure  3  it  can  be  inferred that  in  the  8  days  after  the  Irma genesis,  the
moisture uptake was higher than the precipitation rate, which favored the continuous
release  of  latent  heat,  a  key  factor  in  the  intensification  of  TCs  in  agreement  with
Emanuel [19].. Nevertheless, in the last five days (from day 9 to day 14) of Irma as a TC,
the  moisture  uptake  and  the  rain  rate  temporal  evolution  is  very  similar,  which
corresponds to the high accumulated rainfall during its movement along the north coast
of  Cuba  and  the  Florida  Peninsula.  It  is  notable  that  both  magnitudes  reach  the
maximum value at this time.

Figure 3.  Normalized temporal  evolution of  moisture  uptake from Lagrangian approach
(green) and rain rate from GPM (blue) during hurricane Irma (2017) lifetime from 0000 UTC
30 August to 1200 UTC 13 September. The gray dashed line represents the hurricane Irma
intensity. The moisture uptake and rain rate plotted here represent the sum of all grid point
within the area enclosed by the Hurricane Irma outer radius.

Figure 4 reveals that Irma took most moisture from the environment no related to
TC circulation than moisture from ocean evaporation within the area enclosed by
the outer radius in each best track position. Therefore, the secondary circulation
then transports more moisture inward and, thus, induces a stronger moist core. In
other words, the strong radial inflow transports highly moist air parcels from the
surrounding environment inward to the inner core. 
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Figure 4. Accumulated moisture uptake anomalies (blue – red colors) along the Hurricane Irma 
trajectory from 0000 UTC 30 August to 1200 UTC 13 September. The moisture uptake anomalies 
were compute using the period 1980-2018.

4. Conclusions
In  this  study  we  performed  the  Hurricane  Irma  (2017)  water  budget  analysis

through  a  Lagrangian  approach.  The  Hurricane  Irma  was  one  of  the  most  severe
hurricanes of the 2017 cyclonic season on the North Atlantic basin, and caused heavy
rainfall along the north coast of Cuba and Florida Peninsula. To determine the moisture
uptake for each position of the Irma best track and the water budget inside the system,
the particle dispersion model FLEXPART.

The results showed   that the North Atlantic Ocean between 15°-30° North latitude,
the Sahel region, and the South Atlantic were the main moisture sources for the genesis
and development of Irma. Although, the Caribbean Sea, the Gulf  of Mexico, and the
southeastern  of  United  States  of  America  also  contributed,  but  to  a  lesser  extent.
Furthermore, the North Atlantic Subtropical High-Pressure system, the South Atlantic
Subtropical High-Pressure system, and the easterly winds were identified as the main
moisture transport mechanisms for supplying atmospheric humidity to Irma. 

Despite the great intensity of Irma,  during the first five-six days after genesis, the
precipitation rate was less than 8 mm/h, however, when the hurricane center crossed
over the Greater Antilles as an intense hurricane, the precipitation rate was greater than
20 mm/h, which supports the accumulated rainfall reported in Cuba and La Florida. 

As expected, the moisture supplied from the surface under the area delimited by
hurricane size is small, thus, the water vapour supplied from the environment through
the secondary circulation transports more moisture inward. The accumulated moisture
uptake anomalies  along the hurricane Irma trajectory showed that  both the Tropical
North  and  South  Atlantic  Oceans  were  important  sources  of  moisture  for  Irma
development. However, the region of West Africa and the North Atlantic Ocean near the
African continent and the Iberian Peninsula also provided humidity. 
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