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Abstract: Using a feed-forward neural network, an inverse algorithm was developed to profile the vertical structure of 8 
temperature and specific humidity. The inverse algorithm (Inverse model) was used to calculate temperature and humidity profiles, 9 
which were then compared with other existing methods. The inverse model is found efficient in profiling the vertical structure of 10 
temperature and humidity as compared to other existing methods. For example, the statistical methods notorious for their high 11 
computational cost, altitude-dependent error, and inability to retrieve accurately the vertical temperature and humidity profiles, are 12 
enhanced with an Inverse model. The inverse model’s diurnal and seasonal cycle profiles are also found superior to those of other 13 
existing methods, which could be useful for assimilation in numerical weather forecast models. We suggest that incorporating such 14 
an Inverse model into the ground-based microwave radiometer (GMWR) will enhance the accuracy of the vertical structure of 15 
temperature and humidity profiles, and so the improvement in weather forecasting. The developed inverse model has a resolution 16 
of 50 meters between the surface to 500 meters and 100 meters between 500-2000 meters, and 500 meters beyond 2000 meters. 17 
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1. Introduction 20 

The three-dimensional structure of the atmosphere has been widely studied using numerical weather prediction 21 
(NWP) models, networks of in-situ radiosonde (RS), and satellite remote sensing [1-4]. Although, RS measurements are 22 
prohibitively expensive and biased due to horizontal drifts in the balloon path during high wind conditions [5]. Satellite 23 
measurements have been found to overcome these limitations to some extent, but their horizontal and temporal 24 
resolution is coarse near to the earth’s surface, and so the measured data are not helpful for present-day high-resolution 25 
NWP models. Also, Laser radars and Fourier transform infrared spectrometers can profile the atmospheric states, but 26 
they do not work in the presence of clouds [6].  27 

In the late twentieth century, researchers reported that a ground-based microwave radiometer (GMWR) can profile 28 
the atmospheric temperature, humidity, and cloud liquid water content with high accuracy and perform continuous 29 
measurements at an approximate interval of 2-minutes in all weather conditions [7-9]. GMWR measurements have been 30 
beneficial in studying several atmospheric processes and improving the predictability of NWP models. For example, 31 
over the last two decades, this has been used in severe weather prediction and deriving the diurnal variability of 32 
atmospheric stability indices [10], boundary layer studies [11-13], understanding cloud properties [14], and lightening 33 
studies [7-8]. In addition, Kadygrov et al. (2013) reported that GMMR is preferable over the other existing methods for 34 
studying complex processes such as turbulence fluctuation and changes in heat transfer rate in the atmospheric 35 
boundary layer during a solar eclipse. 36 
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GMWR uses two built-in functions to profile the vertical structure of atmospheric states. For instance, Function-1 37 
calculates the brightness temperature (radiance) in 20-75 GHz bandwidth using atmospheric water vapor resonance at 38 
22.235 GHz and oxygen resonance at 60 GHz. Function-2 transforms these radiances into atmospheric states. The 39 
brightness temperature calculated surrounding the atmospheric water-vapor resonance is preferred for humidity 40 
profiling, and the brightness temperature calculated surrounding oxygen resonance is preferred for temperature 41 
profiling [16]. The brightness temperature obtained from Function-1 is converted to atmospheric states using an inverse 42 
algorithm in Function-2 (also called as Inverse modeling). Such inverse transformation is needed due to the presence of 43 
nonlinearity and non-Gaussian caused by the temperature dependence of atmospheric transmission, the Plank 44 
function’s wave number dependence, clouds, and nonlinear constraints. Inverse techniques used in Function-2 in 45 
GMWR to convert the measured brightness temperature from Function-1 to atmospheric states include the Newtonian 46 
iteration method (NEM), regression retrieval method (RRM), and neural network method (NNM). NEM performs the 47 
mapping of n-dimensional atmospheric state vectors (e.g., temperature, humidity, cloud liquid content, etc.) to the m- 48 
dimensional measurement vectors (i.e., brightness temperature; [17]). However, the primary drawback of NEM is the 49 
large number of iterations required for an optimal solution and the large error in atmospheric state vectors at higher 50 
altitudes. RRM is considered a well-established traditional method in earth and atmospheric science, where atmospheric 51 
state vectors are calculated linearly from measurement vectors (i.e., brightness temperature at different frequencies [18- 52 
19]), but it produces slightly worst results than NEM due to a linear relationship between dependent and independent 53 
vectors. Further, NNM has received global attention by the scientific community to solve the nonlinear problems in 54 
atmospheric sciences in the last two decade. For example, Acciani et al. (2003) reported that neural network outperforms 55 
other retrieval techniques. Vivekanandan et al. (1997) showed that neural network-based algorithms could incorporate 56 
multiple measurements into the retrieval algorithm; however, their application to GMWR (in Function-2) has received 57 
lesser attention than other traditional methods.  58 

In this work, we develop an inverse algorithm (Inverse model) using a feed-forward neural network framework to 59 
derive the atmospheric temperature and humidity profiles from calculated (and/ or radiometric measured) brightness 60 
temperatures at the different frequencies (see Table 1). The paper is structured as below: Section 1 provides introduction, 61 
and Section 2 describes the data and Inverse model framework. In Section 2 of the Inverse model framework, the 62 
description of a feed-forward neural network, the structure of the Inverse model, and the sensitivity to learning rate are 63 
provided. Section 3 presents the results of this work, and Section 4 summarizes the conclusions of this work.  64 

2. Data and Inverse Model Framework 65 

2.1 Data 66 

The daily radiosonde datasets over Mumbai (17.49o E; 18.57o N) for 11 years (2006-2016) are used, which are 67 
downloaded free from the Upper-Air-Sounding Division of the University of Wyoming 68 
(http://weather.uwyo.edu/upperair/sounding.html). The daily radiosonde datasets and existing GMWR brightness 69 
temperature over Mahbubnagar, India (78.11o N; 16.38o E) during the Cloud-Aerosol Interaction and Precipitation 70 
Enhancement (CAIPEX) Integrated Ground Observation Campaign (IGOC) in 2011 is used, which was obtained on 71 
request by the Indian Institute of Tropical Meteorology Pune (see https://www.tropmet.res.in/~caipeex/ for more details 72 
on CAIPEX data).  73 

We used a total of 825 radiosonde profiles for temperature and 750 radiosonde profiles for humidity in 11-years 74 
during January to March, as the remaining profiles were found to have some drastic deformation at higher levels and 75 
were therefore excluded from this analysis. The missing data in vertical levels were interpolated using a cubic-spline 76 
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interpolation method (as the information of all possible heights was not available). Further, to generate the brightness 77 
temperatures at the different frequencies (see Table 1) for 11-year radiosonde observation, a forward model (see Fig. 1 78 
and Rambabu et al. 2013 for more details) was used. 70% of the total number of temperature and humidity profiles was 79 
used to train the algorithm, while the remaining 30% profiles were used to validate and test the algorithm, each by 15%. 80 
In addition, to validate the derived temperature and humidity profile from the developed Inverse model, the existing 81 
GMMR data over the Mahbubnagar during the CAIPEX IGOC campaign 2011 was used. 82 

 

Figure 1: Schematic representation of a forward model (top panel) used to calculate the brightness temperatures at the 83 
different frequencies from the atmospheric variables measured by the radiosonde, where the GMWR measured 84 
brightness temperature are not available, and the Inverse model (bottom panel) used to calculate the atmospheric 85 
variables from the estimated brightness temperature. See Rambabu et al. (2013) for more details on a forward model. 86 

Table 1. List of the water vapor and temperature frequency channels used in the ground-based microwave radiometer 87 
and in the forward model to estimate the brightness temperature. 88 

Sr. no. Water vapor channel (GHz) Temperature channel (GHz) 
1 22.234 51.248 
2 22.500 51.760 
3 23.034 52.280 
4 23.834 52.804 
5 25.000 53.336 
6 26.234 53.848 
7 28.000 54.400 
8 30.000 54.940 
9 - 55.500 
10 - 56.020 
11 - 56.660 
12 - 57.288 
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13 - 57.964 
14 - 58.800 

2.2 Inverse Model Framework 89 

2.2.1 Feed-Forward Neural Network 90 

A standard feed-forward neural network (FNN) was used for constructing an Inverse model that transforms the 91 
forward model calculated (and/ or GMWR radiometric) brightness temperatures at the different frequencies (see Table 92 
1 for list of frequencies) to the atmospheric temperature and humidity profiles. The FNN structure used in this case is 93 
composed of three distinct layers: input, hidden, and output (Fig. 2). Additionally, each layer comprises several 94 
compute nodes arranged parallelly. All compute nodes in the output layer use a linear function, while all compute 95 
nodes in the hidden layer use a nonlinear function (also called an activation function). The activation function specifies 96 
a range for the output calculated at hidden nodes, which can be used as input to other hidden layer arranged parallelly 97 
or as input to the output layer (see Fig. 2 for more details on FNN structure). The output at a particular hidden node 98 
(𝑦), was obtained by weighted-sum of all inputs of the brightness temperature at the different frequencies; see Eq. 1), 99 
while the output at a particular node in the output layer (𝑧), is obtained by weighted-sum of all hidden node’s output 100 
(see Eq. 2). 101 

𝑦𝑗 = 𝑓 (∑ 𝑤𝑖,𝑗𝑥𝑖  + 𝑏𝑗

𝑛

𝑖=1

),                                             (1) 102 

𝑥𝑘 = g (∑ wj,kf (∑ wi,jxi + bj

n

i=1

) + 𝑐𝑘

m

j=1

),                 (2) 103 

Where 𝑥𝑖 is the 𝑖th input; 𝑤𝑖,𝑗 is the associated weight between the 𝑖th input node and 𝑗th hidden node; 𝑤𝑗,𝑘 is the 104 
associated weight between the 𝑗th hidden node and 𝑘th output node of the output layer; 𝑏 and 𝑐 are the correction 105 
factors for hidden and output layers; 𝑖 , 𝑗 , and 𝑘  indices refer to nodes of inputs, hidden, and output layers, 106 
respectively. Function 𝑓(•) is a nonlinear function (see Eq. 3) and the first derivative of Eq. 3 [i.e., 𝑓’ (𝑥)  =  𝑓(𝑥)  − 107 
𝑓2(𝑥)] is used as a sigmoidal activation function in hidden nodes, and function 𝑔(•) is an identity function used in 108 
output nodes (see Fig. 2).     109 

𝑓(𝑥) =  
1

1 + 𝑒−𝑥 ,                                                 (3) 110 

For the first iteration of FNN, the weights in the hidden and output layers are randomly initialized so that the sum 111 
of weights in the hidden layer and the sum of weights in the output layer is less than or equal to 1. The gradient descent 112 
back-propagation method is then used to assign these weights to some fixed values. The gradient descent back- 113 
propagation method is one of the most straightforward and most efficient method used in supervised learning of a 114 
multilayer FNN. The network weights and correction factors in each iteration are updated by propagating errors back 115 
to the network (and so-called back-propagation) until the cost function (see Eq. 4) is minimized.  116 

 117 
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Figure 2: The schematic diagram of a neural network with an example of 5 compute nodes at the hidden layer, 4 input 118 
nodes at the input layer and 6 output nodes at the output layer. The weights between the input and hidden layer are 119 
given by W1 (i,j), and the weights between the hidden and output layer are given W2 (j,k). 120 

J(w) = 1/2 ∑(tk − zk)2 =
1

2(t − z)2 ,.                (4)
c

k=1

 121 

∆W = ᶯ
∂J

∂w
 122 

∆wk,j = ᶯδkyj = ᶯ(tk − zk)f ′(netk)yj,                 (5) 123 

∆wj,i = ᶯδjxi = ᶯxif ′(netj) ∑ wkjδk

c

k=1

,                    (6) 124 

Thus, the weights 𝑤𝑖,𝑗 in the hidden layer and the weights 𝑤𝑗,𝑘 in the output layer are updated in each iteration by 125 
computing the error δk and δj at the output and hidden nodes, respectively (see Eq. 5 and Eq. 6). The overall learning 126 
(or training) of FNN using Eq. 5 and Eq. 6 for fixing the network weights are controlled by a learning rate (η). 127 

2.2.2 Sensitivity to Learning Rate 128 

To initialize an optimal value of learning rate (η), we performed a sensitivity analysis of η for the estimated value 129 
from FNN at the output layer against the number of iterations. The variation of root-mean-square-error (RMSE) against 130 
the number of iterations at the three different learning rates (i.e., 0.01, 0.001, and 0.0001) is shown in Figure 3. The RMSE 131 
variation against the number of iterations at the other η values between 0.01 and 0.0001 is also calculated but is shown 132 
only for the above said η values. The learning rate 𝜂 specifies the relative size of the weight that needs to be changed 133 
during the weight updating process. The RMSE is found to be very sensitive to the learning rate: at a learning rate of  𝜂 = 134 
0.01, a large increase in RMSE with an increase in the number of iterations is seen, and at a learning rate of 𝜂 =0.001 135 
and 0.0001, the variation of RMSE against the number of iterations is seen to be optimized. The RMSE, however, is 136 
optimized at a slightly lesser number of iterations at 𝜂 = 0.001 than at 𝜂 = 0.0001. As a result, we use a learning rate 137 
of 0.001 for the inverse model in our subsequent analysis of this paper. 138 

I J K W1(I,J) W2(J,K) 
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Figure 3: The variation of root-mean-square-error (RMSE) with respect to the variation in the number of iterations (or 139 
Epoch) at the different learning rates (e.g., 0.0001, 0.001, and 0.01) for the constructed inverse model.  140 

 

Figure 4: Schematic structure of the Inverse model used to profile the temperature and humidity based on a feed- 141 
forward neural network. Here, MLP represents a feed-forward neural network, n1 corresponds to the number of nodes 142 
used in the hidden layers, and N2 corresponds to the number of nodes at the output layer. Each MLP structure used in 143 
this case can profile temperature and/or humidity at five different heights. A total of 8 MPL completes the inverse model 144 
algorithm and profiles the atmospheric variables up to 10 km. 145 

 146 
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2.2.3 Structure of the Inverse Model 147 

The structure of the proposed FNN to profile temperature and humidity from measured/estimated brightness 148 
temperature is shown in Figure 4. We used eight parallel FNN structures arranged in a vertical direction for increasing 149 
the accuracy of retrieved vertical profiles. Each FNN is made of five output nodes, with each node corresponding to a 150 
different altitude (or height). Thus, we use a total of 40 vertical levels (i.e., 8 FNN * 5 output nodes) with a resolution of 151 
50 m up to 500 m, 100 m between 500 m and 2 km, and 500 m beyond 2 km up to 10 km. The resolutions of vertical 152 
levels are divided so that many levels occur close to the earth’s surface. Most of the other existing methods are 153 
deteriorate/coarser to examine the processes occurring closure to the earth’s surface. In addition, we also use a large 154 
number of hidden nodes in the FNN structure that are close to the earth’s surface (see Fig. 4). Therefore, the complete 155 
FNN framework is used as an inverse model to estimate the temperature and humidity value at the various vertical 156 
levels. 157 

3. Results 158 

Figures 5, and 6 show vertical profile of temperature and humidity, respectively, from Inverse model and 159 
radiosonde (RS) observation over Mumbai on three different days during winter season (December to February; or DJF). 160 
The brightness temperature at different frequencies (see Table 1) over Mumbai (an input to Inverse model) is calculated 161 
using forward model because radiometric brightness temperature estimated from GMWR was not availbable  (see 162 
Rambabu et al. 2013 for more details on forward model and GMWR measurement).  163 

 

Figure 5: Vertical temperature profile for three different days over Mumbai: a) 5th January 2012, b) 23rd February 2013, 164 
and c) 24th March 2014, from an inverse model (in black) and radiosonde observation (in red), as well as the 165 
corresponding differences (d - f). The brightness temperatures that are fed as an input to the Inverse model, are 166 
calculated from a forward model using radiosonde observation.  167 

2014

2014
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The vertical profile of temperature and humidity calculated from the Inverse model varies very similarly to that 168 
obtained from the RS observation on all three days. The Inverse model based on a feed-forward neural network well 169 
captures the temperature inversion seen in the RS observation. The temperature inversion occurs when a layer of cool 170 
air at the surface is overlain by a layer of warmer air, causing a reversal in temperature structure within the boundary 171 
layer (i.e., air temperature increases despite decreasing with an increase in height). Further, in both the RS observation 172 
and the inverse model, the maximum variation of humidity is seen near the earth’s surface (Fig. 6). This maximum 173 
variation in humidity profile close to the earth’s surface is most likely due to precipitation, dew, and fog. Furthermore, 174 
if we consider the temperature and humidity vertical profiles obtained from RS observation as true profiles, we find 175 
that Inverse model overestimated/or underestimated (at some levels) by about ±2 oC for temperature, ±4 g/kg for 176 
humidity in the lower troposphere, and about +4 oC for temperature and ±0.1 g/kg for humidity in the upper troposphere 177 
for all three successive days, as compared to RS observation. However, these overestimation and underestimation in 178 
the vertical profile of temperature and humidity can not be considered to be 100% accurate as the RS observation can 179 
itself have some measurement bias due to the drift in baloon path during high horizontal wind flow and in fog or rain 180 
conditions). 181 

 

Figure 6: Same as Figure 5 but for specific humidity profile. 182 

In addition to validating Inverse model’s result with RS observation, we also validate Inverse model with an 183 
existing GMWR along with RS observation for two different days over Mahbubnagar, India, during the CAIPEX IGOC 184 
campaign in 2011, using Figures 7, and 8 for temperature and humidity, respectively. In this case, the brightness 185 
temperature measured by an existing GMWR over Mahbubnagar is used as an input to Inverse model instead of 186 
calculating it from RS observation using the forward model. We find good agreement between existing GMWR, RS, and 187 
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Inverse model in the lower troposphere. The large difference in vertical temperature and humidity profile 188 
overestimation/ or underestimation seen between RS observation and GMWR is seen to be reduced between the RS 189 
observation and inverse model. For example, the temperature profile calculated from Inverse model shows a much 190 
smaller overestimation/or underestimation than that seen in existing GMWR with respect to RS observations at all levels. 191 
The profiles calculated from Inverse model agree well with RS observation than the existing GMWR, not only for 192 
temperature but also for humidity, as evidenced by the reduced bias at all heights compared to the existing GMWR. 193 
Further, we investigate how the inverse model estimates the diurnal cycle of humidity and temperature with respect to 194 
existing GMWR during the CAIPEX IGOC 2011 over Mahbubnagar for three successive days from 29 to 31st October 195 
2011. Figure 9 shows the time-height plots of temperature and humidity from the inverse model and existing GMWR 196 
and their corresponding differences. In addition, we find that the temperature and humidity profiles retrieved from an 197 
existing GMWR and inverse model are close at all levels except minor irregularities near the surface. The difference 198 
between the existing GMWR and inverse model is noted in the range of (+3, -1) oC for temperature, ±1 g/kg for humidity 199 
in the lower troposphere, and in range of (+1.5, -4) oC for temperature and minimal difference for humidity in the upper 200 
troposphere. The temperature inversion can be seen in diurnal variation as well with both methods. 201 

 

Figure 7: Vertical temperature profile over the Mahbubnagar during the CAIPEX IGOC campaign on a) 29th October 202 
2011 and b) 31st October 2011 for three different retrieval techniques (i.e., Inverse model, existing ground-based 203 
microwave radiometer, and the radiosonde observation), as well as the corresponding (c and d)  difference. The 204 
brightness temperatures that are fed to as an input to Inverse model are taken from the existing ground-based 205 
microwave radiometer. 206 
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Figure 8: Same as Figure 7 but for specific humidity. 207 

Furthermore, Figure 10 shows daily annual variation of temperature and humidity vertical profiles over Mumbai 208 
from Inverse model and RS observation during 2014, with an input of brightness temperature to Inverse model 209 
computed using a forward model from RS observation. The difference in temperature and humidity profiles between 210 
the inverse model and RS observation are also shown in Figure 10 (e and f). The rapid fall in temperature and increase 211 
in humidity during the transition of pre-monsoon to monsoon period and the increase in temperature and decrease in 212 
humidity during the transition of monsoon to the post-monsoon period seen in RS observation are well captured in 213 
magnitude and pattern by Inverse model. In both the RS observation and Inverse model, we find a stable humidity 214 
variation during winter, and the maximum variation of temperature and humidity is located near the earth’s surface 215 
regardless of seasons. From the difference between the inverse model and RS observation, we find the difference in 216 
range of (-1 to -4) oC below 1.5 Km, 2 to 4 oC above 7 Km, and ±1 oC for the rest of the heights for temperature during 217 
the monsoon period. However, in the case of humidity, we notice the large differences during the monsoon periods and 218 
lesser difference during the rest of the periods, with a variation of ±1.5 g/kg for all heights in all seasons except during 219 
the monsoon season where it is about 3 to 5 g/kg. 220 
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Figure 9: Time-height plot for the diurnal variation of temperature (a, b) and specific humidity (d, e) over Mahbubnagar 221 
during the 29-31st October 2011 in CAIPEX IGOC campaign from the ground-based microwave radiometer (GMWR) 222 
and the inverse model, as well as the difference plot for temperature (g) and humidity (h). Right panels (c, f, and i) of 223 
the figure show the 3-day mean profile of temperature (c) and humidity (f), and the corresponding difference (error) 224 
plot (i) for temperature and humidity between the GMWR and the inverse model. 225 

4. Conclusions 226 

An inverse algorithm (Inverse model) was developed to profile the vertical structure of temperature and humidity 227 
in the troposphere, using a feed-forward neural network. Inverse model has been used to calculate several temperatures 228 
and humidity profiles and compared with different existing techniques/methods. The inverse model is found more 229 
efficient in profiling the temperature and humidity vertical structure than other existing methods. The statistical 230 
methods used in the existing ground-based microwave radiometer (GMWR), known for their high computational cost 231 
and altitude-dependent inaccuracy, and inability to estimate the vertical temperature and humidity profile, are 232 
enhanced when an Inverse model is used. The diurnal and seasonal cycle of temperature and humidity vertical profiles 233 
calculated by Inverse model outperformed other existing methods, which could be helpful for assimilation in numerical 234 
weather prediction models. We suggest that introducing such an Inverse model into GMWR will improve/increase the 235 
accuracy of temperature and humidity retrieval and so the improvement in weather forecasting. 236 
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Figure 10: Time-height plot for the annual variation of temperature (degree Celcius; a, b) and specific humidity (g/kg; 237 
c, d) over Mumbai during 2014 from the radiosonde observation (a, c) and the inverse model (b, d), as well as the 238 
difference plot for temperature (e) and humidity (f) between the inverse model and the radiosonde observation. 239 

 240 

Funding: This research received no external funding. 241 

Data Availability Statement: Data used in this research are freely available in the community, for example, the used Radiosonde 242 
data can be found from the Upper-Air-Sounding Division of University of Wyoming 243 
(http://weather.uwyo.edu/upperair/sounding.html) and the data from CAIPEX IGOC campaign 2011 in India can be found at Indian 244 
Institute of Tropical Meteorology Pune (https://www.tropmet.res.in/~caipeex). However, the developed inverse model code can be 245 
shared on request to the corresponding author. 246 

Acknowledgments: We thank the University of Wyoming for providing the Radiosonde data and IITM for providing the CAIPEX 247 
IGOC field campaign 2011 data. Dr. Abhishek Anand is acknowledged for providing some suggestions during the preparation of 248 
this work. MATLAB and Origin is used for analyzing the results and Fortran for developing the Inverse model codes 249 

References 250 

1. Barrett, E.C., Hamilton, M.G. Potentialities and problems of satellite remote sensing with special reference to arid and 251 
semiarid regions. Climatic Change, 1986, 9, 167–186. https://doi.org/10.1007/BF00140534 252 

2. Trenberth, K. E. The use and abuse of climate models. Nature, 1997, 386 (6621) 131–133. doi:10.1038/386131a0. 253 
3. Rodwell, M.J., Palmer, T.N. Using numerical weather prediction to assess climate models. Q J R Meteorol Soc, 2007, 133, 254 

129–146. https://doi.org/10.1002/qj.23 255 



 13 of 13 
 

 

4. Yang, J., Gong, P., Fu, R. et al. The role of satellite remote sensing in climate change studies. Nature Clim Change, 256 
2013, 3, 875–883. https://doi.org/10.1038/nclimate1908 257 

5. Luers, J.K, Eskridge, R.E. Use of radiosonde temperature data in climate studies. J. Climate, 1998, 11, 1002–1019 258 
6. Karmakar, P. Ground-based microwave radiometry and remote sensing: Methods and applications. Boca Raton, CRC Press., 259 

2013, 214, ISBN 978146651631. 260 
7. Decker, M.T., Westwater, E.R., and Guiraud., FOF.O. Experimental evaluation of ground-based microwave radiometric 261 

sensing of atmospheric temperature and water vapor profiles. J. Appl. Meteorol., 1978, 17, 1788-1795. 262 
8. Askne, J., and Westwater, E. A review of ground-based remote sensing of temperature and moisture by passive microwave 263 

radiometers. IEEE Trans. Geosci. Remote sens., 1986, GE-24, 340-352. 264 
9. Acciani, G. Orazio, A.D. Radiometric profiling of temperature using algorithm based on neural network. IEEE electronics 265 

letters, 2003, 39(17).  266 
10. Madhulatha, A., Rajeevan, M. Nowcasting severe convective activity over southeast India using ground-based microwave 267 

radiometer observations. Journal of Geophysical Research: Atmosphere, 2013, 118, 1–13. doi:10.1029/2012JD018174, 2013  268 
11. Crewell, S., Czekala, H., Lohnert, U., Simmer, C., Rose, T., Zimmermann, R. and Zimmermann, R. Microwave radiometer 269 

for cloud carthography: A 22-channel ground-based microwave radiometer for atmospheric research. Radio Science, 2001, 270 
36, 4, 621-638. 271 

12. Szalowski, K. The effect of the solar eclipse on the air temperature near the ground. J. Atmos. Solar Terrestr. Phys., 2003, 272 
64(15), 1589–1600  273 

13. Cimini, D., Rizi, V., Di Girolamo, P., Marzano, F.S., Macke, A., Pappalardo, G., Richter, A. Overview: tropospheric profiling: 274 
state of the art and future challenges – introduction to the AMT special issue. Atmos. Meas. Tech., 2014, 7, 2981– 275 
2986. https://doi.org/10.5194/amt-7-2981-2014 276 

14. Harikishan, G., Padmakumari, B., Maheskumar, R.S., Pandithurai, G. Macrophysical and microphysical properties of 277 
monsoon clouds over a rain shadow region in India from ground-based radiometric measurements. Journal of Geophysical 278 
Research, 2013, 10.1002/2013JD020872  279 

15. Kadygrov, E.N. Study of Atmospheric Boundary Layer Thermodynamics During Total Solar Eclipses. IEEE Transactions on 280 
Geoscience and Remote Sensing, 2013, 51 (9).  281 

16. Solheim F, Godwin, J., Westwater, E.R., Han, Y., Keihm, S., Marsh, K., and Ware., R. Radiometric profiling of temperature, 282 
water vapor and cloud liquid water using various inversion methods. Radio Sci., 1998, 33, 393-404. 283 

17. Han, Y., and Westwater, E.R. Remote sensing of tropospheric water vapor and cloud liquid water by integrated ground- 284 
based sensors. J. Atmos. Oceanic Technol., 1995, 12, 1050–1059. 285 

18. Westwater, E. R. Ground-based microwave remote sensing of meteorological variables. Atmospheric Remote Sensing by 286 
Microwave Radiometry. M. A. Janssen, Ed., J. Wiley and Sons, Inc., 1993, 145–213. 287 

19. Rodgers, C.D. Retrieval of Atmospheric Temperature and Composition from Remote Measurements of Thermal Radiation. 288 
Reviews of geophysics and space physics, 1976, 14(4).  289 

20. Acciani, G., Orazio, A.D. Radiometric profiling of temperature using algorithm based on neural network. IEEE electronics 290 
letters, 2003, 39(17)  291 

21. Vevekanandan, J. Development of neural network - based inversion method part-1. IEEE publication, 1997, 35(2).  292 
22. Rambabu, S. Pillai, J.S., Agarwal A., and Pandithurai, G. Evaluation of brightness temperature from a forward model of 293 

ground-based microwave radiometer. J. Earth Syst. Sci., 2014, 123(4), 641–650. 294 


