
 

 
 

 

 
Proceedings 2021, 65, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/proceedings 

Proceedings 1 

Convolutional LSTM architecture for precipitation nowcasting 2 

using satellite data†     3 

Carlos Javier Gamboa-Villafruela 1, *, José Carlos Fernández-Alvarez 1, 2, Maykel Márquez-Mijares 1, Albenis Pérez- 4 

Alarcón 1, 2, Alfo José Batista-Leyva 1 5 

1 Departamento de Meteorología, Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de la 6 
Habana, La Habana 10400, Cuba; mmarquez@instec.cu (M.M-M); abatista@instec.cu (A.J.B-L) 7 

2  Environmental Physics Laboratory (EPhysLab), CIM-UVigo, Universidade de Vigo, 32004 Ourense, Spain; 8 
jose.carlos.fernandez.alvarez@uvigo.es (J.C.F-A); albenis.perez.alarcon@uvigo.es (A.P-A) 9 

* Correspondence: cjgamboa0602@gmail.com (C.J.G-V) 10 
† Presented at the 4th International Electronic Conference on Atmospheric Sciences, 16–31 July 2021; 11 

Available online:  12 
 13 

Abstract: The short term prediction of precipitation is a difficult spatio-temporal task due to the 14 

non-uniform characterization of meteorological structures over time. Currently, neural networks 15 

such as convolutional LSTM have shown ability for the spatio-temporal prediction of complex prob- 16 

lems. In this research, it is proposed an LSTM convolutional neural network (CNN-LSTM) architec- 17 

ture for immediate prediction of various short-term precipitation events using satellite data. The 18 

CNN-LSTM is trained with NASA Global Precipitation Measurement (GPM) precipitation data sets, 19 

each at 30-minute intervals. The trained neural network model is used to predict the sixteenth pre- 20 

cipitation data of the corresponding fifteen precipitation sequence and up to a time interval of 180 21 

minutes. The results show that the increase in the number of layers, as well as in the amount of data 22 

in the training data set, improves the quality in the forecast. 23 

 24 
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1. Introduction 27 

Precipitation nowcasting refers to the prediction of rainfall in a local region over a 28 

short period of time generally up to six hours [1]. Short-term prediction of weather events 29 

is important for public safety from high-impact meteorological events such as flash floods, 30 

tropical cyclones, thunderstorms, lightning, high-speed wind, etc. which can affect large 31 

population or areas of significant economic investment. Precipitation nowcasting is also 32 

useful for weather forecasts and guidance in aviation, marine safety, ground traffic con- 33 

trol, and construction industries. Nowcasting is one of the most challenging problems in 34 

weather forecasting because of the non-uniform and flawed characterization of the mete- 35 

orological structures over time. Traditional methods for forecasting based on Numerical 36 

Weather Prediction (NWP) are not suitable for short-term predictions because they are 37 

highly computationally expensive, sensitive to noise and depends a lot on initial condi- 38 

tions of the event [3]. They cause a delay in short-term predictions because of data assim- 39 

ilation and simulation steps required in NWP models which make the forecast irrelevant 40 

by the time it is made. 41 

Existing methods for precipitation nowcasting can roughly be categorized into two 42 

classes [22], namely, NWP based methods and radar echo extrapolation-based methods. 43 

For the NWP approach, making predictions at the nowcasting timescale requires a com- 44 

plex simulation of the physical equations in the atmosphere model. Thus, the current 45 
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state-of-the-art operational precipitation nowcasting systems [19, 6] often adopt the faster 46 

and more accurate extrapolation-based methods. Some computer vision techniques, espe- 47 

cially optical flow-based methods, have proven useful for making accurate extrapolation 48 

of radar maps [10, 6, 20]. However, the success of these optical flow-based methods is 49 

limited because the flow estimation step and the radar echo extrapolation step are sepa- 50 

rated and it is challenging to determine the model parameters to give good prediction 51 

performance. These technical issues may be addressed by viewing the problem from the 52 

machine learning perspective. In essence, precipitation nowcasting is a spatiotemporal 53 

sequence forecasting problem with the sequence of past satellite images as input and the 54 

sequence of a fixed number of future satellite images as output. However, such learning 55 

problems, regardless of their exact applications, are nontrivial in the first place due to the 56 

high dimensionality of the spatiotemporal sequences especially when multi-step predic- 57 

tions have to be made, unless the spatiotemporal structure of the data is captured well by 58 

the prediction model. Moreover, building an effective prediction model for the radar echo 59 

data is even more challenging due to the chaotic nature of the atmosphere. 60 

Recent advances in deep learning, especially recurrent neural network (RNN) and 61 

long short-term memory (LSTM) models [7, 8, 11, 12, 13, 18, 21, 23, 26], provide some 62 

useful insights on how to tackle this problem. According to the philosophy underlying 63 

the deep learning approach, if we have a reasonable end-to-end model and sufficient data 64 

for training it, we are close to solving the problem. In this paper, we propose a novel con- 65 

volutional LSTM network for precipitation nowcasting. We formulate precipitation now- 66 

casting as a spatiotemporal sequence forecasting problem that can be solved under the 67 

general sequence-to-sequence learning framework proposed in [23]. 68 

2. Methodology 69 

2.1 IMERG dataset 70 

          IMERG is the unified algorithm that provides multi-satellite precipitation data. The 71 

precipitation data is obtained from passive microwave sensors of the precipitation meas- 72 

uring satellite comprising the Global Precipitation Measurement (GPM) constellation [27]. 73 

The IMERG dataset is available in temporal resolutions of 30 minutes, 3 hours, 1 day, 7 74 

days, and 30 days. All IMERG dataset has a spatial resolution of 0.1 ̊. Since our goal is 75 

short-term forecasting of precipitation, we use the IMERG dataset with a temporal reso- 76 

lution of 30 minutes. The dataset with a temporal resolution of 30 minutes are available 77 

since March 2014. IMERG dataset with a temporal resolution of 30 minutes is available in 78 

HDF5, GeoTIFF, NetCDF, ASCII, PNG, KMZ, OpenDAP, GrADS and THREDDS data for- 79 

mats. For our research, we use the HDF5 format IMERG dataset [28] for all subsequent 80 

analysis. We use only the ‘precipitatonCal’ field from the HDF5 dataset which is multi- 81 

satellite precipitation data with gauge calibration and has a unit of mm/hour. 82 

   83 

                                                    2.2 Nowcasting problem and training data 84 

          In a precipitation nowcasting problem using satellite data, the spatial region is rep- 85 

resented by M x N grid with Z measurement values varying over time. At any time (t), 86 

the observation is a tensor X where X ∈ RMxNxZ where R is the observed feature (precipita- 87 

tion). If the observation is recorded periodically, we get a sequence of observed features 88 

X<1>, X<2>, X<3>, …, X<t>. The nowcasting problem is then to predict the next sequence X<t+1> 89 

given the previous observations. In this research, we choose a square grid (M = N = 120) 90 

from the IMERG dataset as shown in Figure 1. 91 

In our study, we would like to predict the sequence X<1>, X<2>, X<3>, …, X<15> from pre- 92 

vious fifteen observations at an interval of 30 minutes. For each input precipitation data, 93 

we use the subsequent precipitation data as the output precipitation in the training set. 94 

Therefore, we prepare 4000 examples in the training set, 1000 examples in the validation 95 

set, and 24 examples for the test set. All two sets in training and validation have diverse 96 

sets of precipitation examples such as hurricanes, storms, tropical depression, etc. 97 
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Figure 1. Intensity of precipitation variable of the IMERG HDF5 file. 112 

 113 

2.3 Development of the Convolutional LSTM Network architecture 114 

          We develop convolutional neural network by stacking one, two and three LSTM 115 

layers for spatial and temporal learning feature learning which followed by a 3D convo- 116 

lutional layer for the next 30 minutes precipitation prediction as shown in Figure 2. In the 117 

last layer of the architecture, we use ReLU as the activation layer. This is because precipi- 118 

tation nowcasting is a regression problem where the output of the convolutional neural 119 

network is a precipitation value. Since precipitation cannot take negative values, we 120 

choose ReLU to turn any negative activations into zeros (i.e. no rain).  121 

 122 

 123 

Figure 2. Convolutional LSTM architecture for precipitation nowcasting using the IMERG dataset. 124 

 125 

3. Results and Discussion 126 

          Below is an example in the April 29, 2015 test data set of a predicted storm from t + 127 

30 minutes to t + 180 minutes illustrated below using the convolutional LSTM network 128 
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with three layers Figure 3. We forecast more over time, the accuracy of the model de- 129 

creases. The model predicts that the precipitation values are initially good up to t + 180 130 

minutes, although for the last intervals the precision decreases a little. Interestingly, in all 131 

cases, the model preserves the direction and speed of the storm. 132 

 133 

 134 

(a) 135 

 136 

 137 

 138 

 (b) 139 

 (c) 140 

 141 

                                                     142 
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                                                      (d) 143 
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 145 

                                                  (e)                                     146 

                                  147 

 148 

(f) 149 

                                                   150 
                                                         Figure 3. Nowcasting of a storm occurred on April 29, 2015 for (a) t+30, (b) t+60, (c) t+90, (d)       151 
                                                    t+120, (e) t+150 and (f) t+180 minutes using Convolutional LSTM. 152 
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          From the images, we find that the model slightly underestimates precipitation val- 153 

ues above 20mm / hour as we rarely find predicted precipitation above 20mm / hour. The 154 

reason for this is that the number of training samples is much smaller for higher precipi- 155 

tation values and so the neural network is more biased towards the prediction of lower 156 

precipitation values. This is also a general problem with the unbalanced data set in deep 157 

learning-based techniques [33]. The neural network, however, estimates the speed and 158 

direction of storms accurately from past precipitation data, and the shape of the predicted 159 

precipitation corresponds to the observed precipitation. This is because the network has 160 

learned the spatial correlations between different timestamps of the previous sequences 161 

during end-to-end training. 162 

          In Figure 4, Figure 5, Figure 6 and Figure 7 we see how the Convolutional LSTM 163 

neural network with 3 layers exceeds the one and two layers by having smaller RMSE and 164 

MAE. We also compared the prediction results of each model using the correlation at each 165 

time step in the prediction. Although the accuracy of the prediction decreases as the pre- 166 

diction time step progresses, the Convolutional LSTM network with more stacked layers 167 

continues to perform better at each time step. 168 

 169 

 170 

 171 

Figure 4. Plots Bias of magnitude of observed precipitation and predicted  172 

                                                         precipitation for the three layers. 173 

 174 
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                                                      175 
                                                     Figure 5. Plots Correlation of magnitude of observed precipitation and predicted  176 
                                                           precipitation for the three layers. 177 

 178 

 179 
                                                      Figure 6. Plots Mean Absolute Error of magnitude of observed precipitation and predicted  180 
                                                            precipitation for the three layers. 181 

 182 

 183 
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 184 
                                                          Figure 7. Plots Root Mean Square Error of magnitude of observed precipitation and predicted  185 
                                                          precipitation for the three layers. 186 

4. Conclusions 187 

          In this article, we present a new Convolutional LSTM architecture for forecasting 188 

precipitation from space satellite data. We found that the LSTM model with three layers 189 

obtained the best results and predicts precipitation with good accuracy even for a lead 190 

time of 180 minutes. We conclude that Convolutional LSTM is very suitable for capturing 191 

spatiotemporal relations in the satellite-based precipitation dataset for short-term fore- 192 

casting. The model well preserves the speed and directions of the precipitation in the fore- 193 

casted results. Satellite based precipitation nowcasting is quite important as radar data 194 

has limitations of not being available in all regions. A significant improvement in results 195 

could be expected using a larger training set, using a convolutional LSTM neural network 196 

with four layers, performing hyperparameter tuning, pre-classification of storm type with 197 

geographic information, and use of a weighted loss function.  198 
 199 
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