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Abstract: Precipitation measurement over complex topography and high elevated regions has al-
ways been a great challenge in the recent decades. On the other side, satellite-based and numerical 
weather prediction model outputs can be an alternative to fill this gap. Hence, the goal of this study 
is to evaluate the spatio-temporal stability and hydrologic utility of four precipitation products 
(TMPA-3B42v7, IMERGHHFv06, ERA5 and PERSIANN) over a mountainous basin (Karasu basin) 
located in the eastern part of Turkey. Moreover, Kling Gupta Efficiency (KGE) including its corre-
lation, bias and variability ratio components are used for direct comparison of precipitation prod-
ucts (PPs) with observed gauge data and Hansen-Kuiper (HK) score is utilized to assess the de-
tectability strength of PPs for different precipitation events. In the same way, the hydrologic utility 
of PPs is tested by exploiting a conceptual rainfall-runoff model under Kling Gupta Efficiency 
(KGE) and Nash-Sutcliffe Efficiency (NSE) metrics. Generally, all PPs show low performance for 
the direct comparison with observed data while their performance considerably increases for 
streamflow simulation. TMPA-3B42v7 has a high reproducibility in streamflow (KGE=0.84) fol-
lowed by IMERGHHFv06 (KGE=0.76), ERA5 (KGE=0.75) and PERSIANN (KGE=0.70) for the entire 
period (2015-2019) in this study.  
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1. Introduction 
High spatial and temporal resolution precipitation estimates are essential for deal-

ing with problems related to water resources management, flood forecasting, agricultural 
forecasts and natural hazards [1,2]. Moreover, utilizing hydrologic models for rain-
fall-runoff simulation in a basin always need accurate precipitation estimates which are 
limited for most regions [3]. Precipitation estimation by rain gauge network is one of the 
well-known methods and provide the opportunity of direct physical measurement of 
precipitation with high accuracy above the ground level [4,5]. However, rain gauges are 
limited over time and space and usually the network is denser in low lying areas. The 
high-land regions typically referred as having complex topography suffer from gauge 
scarcity that cause detrimental effects in rainfall-runoff simulations over mountainous 
basins [6-9]. 

In the recent years, precipitation derived from satellites using Passive Microwave 
(PMW) and Infrared (IR) sensor information and numerical weather prediction model 
outputs can be an alternative in poorly gauged regions around the world. Hence, Satellite 
and Reanalysis Precipitation Products (PPs) have been implemented for numerous hy-
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drometeorological studies, such as rainfall-runoff simulation [10], natural hazard [11], 
climate change [12] as well as renewable energy [13]. 

Moreover, a number of Precipitation Products (PPs) with different spatial and 
temporal resolution from various sources have been developed, such as Tropical Rainfall 
Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42v7 [14], 
Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) 
Half Hourly (IMERGHH) final run v06 [15], European Centre for Medium Range 
Weather Forecasts (ECMWF) reanalysis fifth generation (ERA5) [16] and Precipitation 
Estimation from Remotely Sensed Information using Artificial Neural Networks (PER-
SIANN) [17].  

Furthermore, the application of hydrologic models has received considerable atten-
tion for solving the real-world problems related to water resources management and 
development and the hydrologic models’ structures varies from simple to very sophisti-
cated considering the level of information used in the model for a particular problem 
[18-20]. 

The consistency of different PP has been caried out by several authors in regional 
and global scales around the world [21-23]. However, the reliability of PPs over a specific 
area is not applicable for another region and an individual assessment is needed to ad-
dress the stability of PPs. While different studies have been caried out to address the re-
liability of some PPs over Turkey [24-26], previous studies either considered only direct 
comparison excluding the hydrologic utility or modeling has been taken into account in a 
coarse time step such as monthly. In this work, we consider both direct PP comparison 
including seasonal variability and utilize PPs in hydrologic modeling in a daily time step. 

The aim of this study is to evaluate both meteorological and hydrological stability of 
four PPs (TMPA-3B42v7, IMERGHHFv06, ERA5 and PERSIANN) considering the sea-
sonal variability of precipitation in daily time step for 5 water years from October 2014 to 
September 2019.  

The structure of this paper is as follow: Section 1 present a comprehensive intro-
duction to PPs. Section 2 of this study give information of materials and methods. Section 
3 present the results and detailed discussions and finally, conclusions are conveyed in 
Section 4. 

2. Materials and Methods 

2.1. Study area 
With a drainage area of around 10250 km2, Karasu river originates the headwaters of 

the largest basin (Euphrates) in Turkey situated within 38O 58’ E to 41O 39’ E and 39O 23’ 

Figure 1. Geographical location, Basin Elevation (m), meteorological stations and hydrological 

station located at the study area. 
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N to 40O 25’ N. The basin elevation varies from 1130 m to 3500 m and the outlet is con-
trolled by Kemah Boğazı (E21A019) stream gaging station (Figure 1). 

2.2. Data 
In the study, daily precipitation and temperature data from 23 meteorological sta-

tions are provided by General Directorate of Meteorology (GDM) and streamflow data at 
the basin outlet (E21A019) is obtained from General Directorate of Hydraulic Works 
(GDHW) for 5 water years (October 2014 to September 2019). Moreover, daily precipita-
tion from four PPs, TRMM Multi-satellite Precipitation Analysis (TMPA) 3B42v7, Inte-
grated Multi-satellitE Retrievals for GPM (IMERG) Half Hourly final runv06, European 
Centre for Medium Range Weather Forecasts (ECMWF) reanalysis fifth generation 
(ERA5) and Precipitation Estimation from Remotely Sensed Information using Artificial 
Neural Networks (PERSIANN) are acquired from different sources for validation. The 
properties of selected GPDs are summarized in Table 1. 

 
Table 1. Properties of selected PPs, Abbreviations in the data source column; G, gauge; S, satellite; 
R; Reanalysis. 

Name 
Data 

source(s) 
Spatial  

resolution 
Spatial  

coverage 
Temporal  
resolution 

Reference 

TMPA-3B42v7 G, S 0.25O 50O N/S 3-hourly [14] 

IMERGHHFv06 G, S 0.10O 60O N/S 30 min [15] 

ERA5 R 0.25O 50O N/S Hourly [16] 

PERSIANN S 0.25O 60O N/S Hourly [17] 

2.3. Methodology 
For the direct comparison of PPs with observed precipitation, Kling Gupta Effi-

ciency (KGE) [27,28] which is a combination of correlation, bias and variability ratio is 
utilized . In the same way, Hansen-Kuiper (HK) score is used to measure the detectability 
strength of PPs for five different precipitation categories based on World Meteorological 
Organization [29] and modified by Zambran Bigiarini [30]. The five precipitation thresh-
olds considered are: no-precipitation (less than 1 mm/day), light precipitation (1-5 
mm/day), moderate precipitation (5-20 mm/day), heavy precipitation (20-40 mm/day) 
and violent precipitation (more than 40 mm/day). Moreover, Nash–Sutcliffe Efficiency 
(NSE) and KGE are selected to evaluate the hydrologic utility of PPs for streamflow 
simulation. Two scenarios are considered in this case; firstly, the model parameters are 
calibrated using observed precipitation by ground stations and then PPs are replaced and 
tested individually (scheme-1). Secondly, the model parameters are calibrated and vali-
dated for each PP independently (scheme-2). Table 2 shows the properties of selected 
evaluation metrics whereby the optimal value is unity for each of them.  

For the hydrologic modeling part, TUW model, a conceptual hydrologic model de-
veloped by the Technical University of Vienna and built based-on the similar structure of 
HBV model is utilized operating at daily time scale. TUW model has 15 parameters and is 
able to simulate runoff, snow and soil moisture using inputs from daily accumulated 
precipitation, daily average temperature and daily potential evapotranspiration. More-
over, for model parameter calibration observed streamflow is demanded by the model. 
Information on 15 model parameters are summarized in Table 3. 
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3. Result and discussion 

3.1. Mean daily precipitation 
Figure 2 shows the mean daily precipitation from observed and four PPs including 

their bias over the study area for the entire period (2014-2019) and four seasons. Overall, 
the region receives 1.5 mm/day precipitation for the entire period where this amount in-
creases to 2.2 mm/day during the spring and reduces to 0.7 mm/day in the summer. Pre-
cipitation during autumn (1.1 mm/day) is less when compared to winter (1.8 mm/day). 

Furthermore, among all PPs, PERSIANN always underestimate precipitation while the 
others show an overestimation of mean daily precipitation, ERA5 giving the highest 
overestimate (bias; 1.1 mm/day) during spring season. Both IMERGHHFv06 and ERA5 

Table 2. Properties of performance indices for evaluation of PPs 

Performance 
indicator 

Mathematical statement Explanation 

Kling Gupta 
Efficiency and 
its components 

KGE=1-[ R-1 2+ β-1
2
+ VR-1 2]

0.5
 

R=
1
n

on-µ0 sn-µs /(δo×δs)
n

1

, 

β=
µs
µo

,  						VR=(δs×µo)/(µs×δo) 

R is Pearson correlation coefficient, β (Bias) is 
the ratio of estimated and observed mean, 
VR (Variability Ratio) is the ratio of estimated 
and observed coefficients of variation, µ and 
δ are the distribution mean and standard 
deviation where s and o indicate estimated 
and observed. 
M (Miss); when the observed precipitation is 
not detected. F (False); when the precipita-
tion is detected but not observed, H (Hit); 
when the observed precipitation is correctly 
detected, CN (Correct Negative); a no precip-
itation event is detected. 
n is the sample size of the observed or cal-
culated streamflow. 𝑄#$% and 𝑄#&#'	 present 
the observed and simulated streamflow, 
𝑄($% present the mean observed streamflow. 
 

Hansen-Kuiper HK=
H×CN -(F×M)
H+M  (F+CN)

 

Nash–Sutcliffe 
Efficiency 

NSE=1-
(Qi

sim-Qi
ob)

2n
i=1

(Qi
ob-Qi

ob)
2

n
i=1

 

Figure 2. Mean daily precipitation and its bias compared to observed over the study region 

for the entire period and four seasons. 
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show close mean daily precipitation during autumn and winter seasons while 
TMPA-3B42v7 display more precipitation (1.9 mm/day) during autumn season and pre-
sent the lowest bias (0.12 mm/day) in the summer, comparatively. 

3.2. Quantitative and Categorial performance of PPs 
Figure 3 indicates the median of Kling Gupta Efficiency (KGE) including its three 

components for the entire period and four seasons. All PPs perform weak for daily pre-
cipitation in Karasu basin where the highest performance is given by ERA5 (median 
KGE; 0.27) during the autumn season. Moreover, among gauge corrected PPs, 
TMPA-3B42v7 show the highest bias (1.61) over the study area for the entire period 
where IMERGHHFv06 significantly overestimate bias (median of bias; 2.14) during 
winter. Furthermore, PERSIANN always underestimate bias and overestimate variability 
ratio for the entire period and four seasons. 

Figure 4 presents the detectability strength of selected PPs for five precipitation in-
tensities which is evaluated by Hansen-Kuiper (HK) score considering entire period and 
four seasons. Generally, PPs show better detectability for low intensity daily precipita-
tion and their detectability strength decrease by increasing precipitation intensities. 
Among PPs, ERA5 show high detectability for precipitation less than 1 mm/day for the 
entire period and this amount increases to 0.47 during autumn season. Moreover, ERA5 
present better detectability for moderate precipitation overall. All PPs show higher de-
tectability for moderate precipitation compared to light precipitation. IMERGHHFv6 
show higher detectability compared to TMPA-3B42v7 for precipitation less than 1 mm 

Figure 3. PPs reliability at the regional scale under Kling Gupta Efficiency (KGE) and its components for daily precipitation con-

sidering the entire period and four seasons. Y-axis color presents: satellite [blue], gauge and satellite [red], Reanalysis [green]. 

Figure 4. PPs detection ability in reproducing daily precipitation intensities expressed in the form of Hansen-Kuiper (HK) score 

considering the entire period and four seasons. Y-axis color presents: satellite [blue], gauge and satellite [red], Reanalysis [green]. 
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/day. PERSIANN performed weak for capturing different precipitation events, compara-
tively. 

3.3. Hydrologic utility of PPs 
Figure 5 displays the observed and simulated hydrographs in two schemes including 
gauge precipitation and PPs for Karasu basin. Daily streamflows are reproduced by the 
TUW model for 5 water years classified into two parts: model calibration (October 2014 to 

September 2016) and validation (October 2016 to September 2019). Figure 6 maps the 
performance of PPs for streamflow simulation at the Karasu basin outlet. The model 
displays a high performance using gauge observations both in the calibration and vali-

Figure 6. Hydrographs of observed and simulated daily discharge based on observed precipitation and four PPs 

for calibration (October 2014 to September 2016) and validation (October 2016 to September 2019) period in two 

schemes. 

Figure 5. Performance of daily streamflow for observed precipitation and selected PPs. 
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dation periods. On the other hand, PPs do not show the same success in scheme-1 alt-
hough having high correlation ratios and high bias. Only PERSIANN indicates an unu-
sual behavior with a low calibration and high validation simulation. Furthermore, when 
the model parameters are calibrated by each PP individually, all PPs show high repro-
ducibility of streamflow for calibration period and acceptable ranges for validation. For 
scheme-2, PERSIANN again performed unexpectedly exhibiting the lowest results of all 
PPs. Table 3 summarizes TUW model parameter ranges and calibration results for ob-
served and PPs. 

 

4. Conclusions 
In this study, the reliability of four PPs (TMPA-3B42v7, IMERGHHFv06, ERA5 and 
PERSIANN) is tested by direct comparison of PPs with observed precipitation obtained 
from 23 ground stations. Moreover, the hydrologic utility of each PP on runoff is evalu-
ated for 5 water years (October 2014 to September 2019) at the mountainous Karasu ba-
sin. Several performance metrics (KGE, HK and NSE) are considered for the meteoro-
logical and hydrological evaluation. The major conclusions are summarized as follows: 

• All PPs show high detectability for low intensity precipitation where their de-
tectability strength decreases for high intensity precipitation for the considered 
entire period and four seasons. Furthermore, ERA5 shows high detectability in 
almost all precipitation events compared to other PPs.  

• In the direct comparison, all PP performances (median of KGE varies from -0.06 
of TMPA-3B42v7 to 0.08 of ERA5) are low for daily precipitation during the en-
tire period. Although PP correlations (R) are higher, high/low bias and variability 
ratios cause detrimental effects. 

• PPs show a better reproducibility for streamflow when evaluated against direct 
precipitation comparison with gauge data. Moreover, PPs are able to estimate 
streamflow with high accuracy if model parameters are calibrated by PPs indi-
vidually. TMPA-3B42v7 shows the highest performance for streamflow simula-
tion both in calibration (NSE; 0.82) and validation (NSE; 0.64) periods in 
scheme-2, followed by IMERGHHFv6 and ERA5. PERSIANN shows variable 

Table 3. Model parameter range and optimum values for observed and PPs. Number of the column indicates; 0, 
parameter range; 1, Obs; 2,TMPA-3B42v7; 3, IMERGHHFv06; 4, ERA5; 5, PERSIANN 

Parameter and units	 0	 1	 2 3	 4	 5	

Snow correction factor - SCF (-) 0.9 - 1.5 1.44 1.12 1.03 0.91 1.46 
Degree-day factor - DDF (mm/°C /day) 0.0 - 5.0 0.36 0.3 0.51 0.36 0.33 
Temperature threshold above which precipitation is rain- Tr (°C) 1.0 - 3.0 2.51 1.74 1.43 2.92 2.99 
Temperature threshold below which precipitation is snow Ts (°C) - 3.0 – 1.0 -1.01 -0.01 -0.1 -2.13 1 
Temperature threshold above which melt starts - Tm (°C) - 2.0 – 2.0 -0.5 -1.86 0.87 -0.92 1.87 
Parameter related to the limit for potential evaporation - Lpart (-) 0.0 - 1.0 0.88 0.6 0.36 0.82 0.69 
Field capacity - FC (mm) 0.0 - 600 132.2 317.8 45.3 115.3 591.5 
Non-linear parameter for runoff production - Beta (-) 0.0 - 20 0.97 1.82 5.52 14.75 0.05 
Constant percolation rate - K0 (mm/day) 0.0 - 2.0 0.69 1.09 0.73 1.2 1.34 
Storage coefficient for very fast response - K1 (day)  2.0– 30 26.39 23.12 20.06 27 27.08 
Storage coefficient for fast response -K2 (day) 30 - 250 36.1 38.3 50.9 78.5 245.5 
Storage coefficient for slow response - lsuz (day) 1.0 - 100 51.8 87.9 57.5 46.4 98.4 
Threshold storage state - cperc (mm) 0.0- 8.0 6.44 5.03 6.97 6.79 0.39 
Maximum base at low flows - bmax (day) 0.0 - 30 14.23 13.65 7.78 7.45 15.4 
Free scaling parameter - croute (day2/mm) 0.0 - 50 17.81 27.37 24.35 29.37 5.32 
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performance in both schemes for calibration/validation and has the lowest per-
formance of all PP in scheme-2. 

Future work will include more PPs for direct precipitation comparison as well as 
hydrologic simulations. 
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