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Abstract: The generalized extreme value distribution (GEVD) has been widely used to model the 7 

extreme events in many areas. It is however limited to using only block maxima, which motivated 8 

to model the GEVD dealing with r-largest order statistics (rGEVD). The rGEVD which uses more 9 

than one extreme per block can significantly improves the performance of the GEVD. The four pa-10 

rameter kappa distribution (K4D) is a generalization of some three-parameter distributions includ-11 

ing the GEVD. It can be useful in fitting data when three parameters in the GEVD are not sufficient 12 

to capture the variability of the extreme observations. The K4D still uses only block maxima. In this 13 

study, we thus extend the K4D to deal with r-largest order statistics as analogy as the GEVD is 14 

extended to the rGEVD. The new distribution is called the r-largest four parameter kappa distribu-15 

tion (rK4D). We derive a joint probability density function (PDF) of the rK4D, and the marginal and 16 

conditional cumulative distribution functions and PDFs. The maximum likelihood method is con-17 

sidered to estimate parameters. The usefulness and some practical concerns of the rK4D are illus-18 

trated by applying it to Venice sea-level data. This example study shows that the rK4D gives better 19 

fit but larger variances of the parameter estimates than the rGEVD. Some new r-largest distributions 20 

are derived as special cases of the rK4D, such as the r-largest logistic (rLD), generalized logistic 21 

(rGLD), and generalized Gumbel distributions (rGGD). 22 

Keywords: r-largest order statistics; Hydrology; Annual maximum sea level  23 

 24 

1. Introduction 25 

The generalized extreme value distribution (GEVD) has been widely used to analyse 26 

univariate extreme values (Coles 2001). The GEVD encompasses all three possible asymp-27 

totic extreme value distributions predicted by large sample theory. The cumulative distri-28 

bution function (cdf) of the GEVD is as follows (Hosking and Wallis 1997): 29 

 30 

𝐹3(𝑥) = 𝑒𝑥𝑝 {−(1 − 𝑘
𝑥 − 𝜇

𝜎
)1/𝑘} 31 

 32 

When 1 − 𝑘(𝑥 − 𝜇)/𝜎 > 0  and 𝜎 > 0 , where 𝜇,  𝜎,  𝑘 are the location, scale, and 33 

shape parameters, respectively. The particular case for k = 0 in (1) is the Gumbel distribu-34 

tion. Note that the sign of k is changed from the book of Coles (2001). 35 

One difficulty of applying the GEVD is using the limited amount of data for model 36 

estimation. Since extreme values are scarce, making effective use of the available infor-37 

mation is important in extremes. This issue has motivated the search for a model to use 38 

more data other than just block maxima. The inclusion of more data up to r-th order sta-39 

tistics in each block other than just maxima will improve precision of model estimation, 40 

but the interpretation of parameters is unaltered from the univariate GEVD for block max-41 

ima. The above univariate result was extended to the r-largest order statistics model, 42 

which gives the joint density function of the limit distribution (Coles 2001); 43 
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𝑓3(𝑥(𝑟)) = exp{−𝜔(𝑥(𝑟))1/𝑘} × ∏ 𝜎−1𝜔(𝑥(𝑠))
1
𝑘

−1

𝑟

𝑠=1

 1 

𝑤ℎ𝑒𝑟𝑒 𝑥(1) ≥ 𝑥(2) ≥ ⋯ ≥ 𝑥(𝑟),  𝑎𝑛𝑑 𝑤(𝑥(𝑠)) = 1 − 𝑘
𝑥(𝑠) − 𝜇

𝜎
> 0 𝑓𝑜𝑟 𝑠 = 1,2, ⋯ ,  𝑟 2 

 3 

The rGEVD was encouraged to use by Zhang (2004), and has been employed in some 4 

real applications (Soares and Scotto 2004; An and Pandey 2007; Wang and Zhang 2008; 5 

Feng and Jiang 2015; Naseef and Kumar 2017). The number r comprises a bias-variance 6 

trade-off: small values of r generate few data leading to high variance; large values of 7 

$r$ are likely to violate the asymptotic support for the model, leading to bias (Coles 2001). 8 

Bader et al.(2017) developed automated methods of selecting r from the rGEVD. 9 

The inclusion of more data up to r-th order statistics in each block other than just 10 

maxima will improve precision of model estimation, but the interpretation of parameters 11 

is unaltered from the univariate GEVD for block maxima. For small to moderate sample 12 

sizes, the GEVD sometimes yields inadequate results. It may be because the GEVD is de-13 

rived by a large sample theory for the extremes of independent sequences. 14 

As a generalization of some common three-parameter distributions including the 15 

GEVD, the four parameter kappa distribution (K4D) was introduced by Hosking (1994). 16 

It can be useful in fitting data when three parameter distributions including the GEVD are 17 

not sufficient to capture the variability of observations. Some researchers studied on the 18 

K4D (Dupuis 1997; Dupuis and Winchester 2001; Singh and Deng 2003; Park and Kim 19 

2007; Murshed et al. 2014). 20 

The probability density function (pdf) of K4D is, 21 

 22 

𝑓4(𝑥) = 𝜎−1𝜔(𝑥)(1/𝑘)−1𝐹4(𝑥)1−ℎ 23 

 24 

𝑤ℎ𝑒𝑟𝑒 𝑤(𝑥) = 1 − 𝑘
𝑥−𝜇

𝜎
, F4(x) = {1 − hω(x)1/k}

1/h
 is the cdf of the K4D. 25 

 26 

The K4D includes many distributions as special cases, as shown in Figure1 the gen-27 

eralized Pareto distribution for h=1, the GEVD for h=0, the generalized logistic distribu-28 

tion for h=-1, the generalized Gumbel distribution for k=0, the Gumbel distribution for 29 

h=0, k=0. The K4D is flexible and widely applicable to the data including not only extreme 30 

values but also skewed data. It has been used in many fields, particularly in hydrology 31 

and atmospheric sciences, for fitting extreme values or skewed data (e.g., Parida 1999; 32 

Park and Jung 2002; Seo et al. 2015; Kjeldsen et al. 2017; Brunner et al. 2019; Jung and 33 

Schindler 2019). Hosking and Wallis (1997) employed the K4D in regional frequency anal-34 

ysis as a parent distribution from which the samples are drawn. Blum et al.(2017) found 35 

that the K4D provides a very good representation of daily streamflow across most physi-36 

ographic regions in the conterminous United States.  37 

 38 

Figure 1. Relationship of the four parameter kappa distribution (K4D) to other distributions, 39 

which indicates a wide coverage of K4D. 40 
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In analyzing extreme values, the K4D has the same limitation of using only the block 1 

maxima as the GEVD has Like as the GEVD was extended to rGEVD, an extension of the 2 

K4D to r-largest order statistic model may be very useful to address this limitation. The 3 

inclusion of more observations up to r-th order statistics other than just maxima will im-4 

prove precision of model estimation. The extension in the K4D is not published yet. 5 

In this study, we thus developed an r-largest order statistics model as an extension 6 

of the K4D as well as of the rGEVD. It is referred to the rK4D. Figure2 illustrates our mo-7 

tivic schema. The remainder of this paper is organized as follows. Section 2 includes the 8 

definition of the rK4D. Section 3 some practical concerns of the rK4D by applying it to 9 

Venice sea-level data. Section 4 concludes with discussion. 10 

 11 

Figure 2. A motivic schema on generalizations from 2 parameters to 4 parameters, and extensions 12 

from the block maxima models to the r-largest order statistic models, which leads to the r-largest 13 

four parameter kappa distribution (rK4D). 14 

2. r-largest four parameter kappa distribution 15 

2.1. Definition of the rK4D 16 

 17 

The r-largest four parameter kappa distribution (rK4D) is not the result from any 18 

theoretical derivation but just an analogous extension from the K4D and the rGEVD. To 19 

define the joint probability density function (pdf) of the rK4D, we considered and fol-20 

lowed the generalization processes from the GEVD to the K4D and to the rGEVD. 21 

We define the joint pdf of the Rk4d; under k ≠0, h ≠0, 22 

 23 

 24 

  25 

                                            𝐶𝑟 =  {
∏ [1 − (𝑟 − 𝑖)ℎ]

𝑟−1

𝑖=1
 

 1                         

𝑖𝑓 𝑟 ≥ 2

𝑖𝑓 𝑟 = 1
 26 

𝑔(𝑥𝑟) = ∏ 𝜔(𝑥(𝑠))
1
𝑘

−1

𝑟

𝑠=1

 27 

 28 

The supports of this pdf are 𝑥(1) ≥ 𝑥(2) ≥ ⋯ ≥ 𝑥(𝑟),  𝜎 > 0,  𝑤(𝑥(𝑠)) > 0 𝑓𝑜𝑟 𝑠 =29 

1,2, ⋯ ,  𝑟,   𝐶𝑟 > 0,   𝑎𝑛𝑑  1 − ℎ × 𝑤(𝑥(𝑟))
1/𝑘

> 0, When 𝑟 = 1, this pdf is same as the pdf of 30 

the K4D in (3), when ℎ → 0, this pdf goes to the pdf of the rGEVD. 31 

 32 

 33 

 34 

 35 

𝑓4(𝑥(𝑟)) = 𝜌−𝑟𝐶𝑟 × 𝑔(𝑥𝑟) × 𝐹4(𝑥(𝑟))1−𝑟ℎ 
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3. Real application : Venice sea-level data 1 

 2 

These data consist of the 10 largest sea-levels in Venice over the period 1931-1981, 3 

except for the year 1935 (Coles 2001). The rK4D model is fitted to the values for r=1,2,…,10. 4 

The MLE of parameters and the 20-year return levels with standard errors in the paren-5 

thesis for several values of r are given in Table 1. For comparison, similar results from the 6 

fitted rGEVD are also presented. The upper table is for the rGEVD and the lower one is 7 

for the rK4D. In Table 1, the standard errors of parameter estimates decrease with increas-8 

ing values of r for the rGEVD. That is not obvious in the rK4D but generally shows a 9 

decreasing trend. These non-monotonic decreasing cases may be because of the trouble in 10 

numerical optimization with 4 parameters in the rK4D or the intrinsic property of the 11 

rK4D. The SEs of �̂�, σ̂, and k̂ in the rK4D are generally bigger than those in the rGEVD. 12 

The SEs of h estimates in the rK4D are much larger compared to those of the other param-13 

eter estimates. 14 

 15 

Table 1. The estimates of parameters and 20-year return level (r20) with standard 16 

errors (se) of the estimates in parenthesis which are obtained from the r-largest order sta-17 

tistic models fitted to Venice sea-level data with different values of r. Upper table is for 18 

the rGEVD and lower one is for the rK4D. `nllh' stands for the negative log-likelihood 19 

function value. 20 

r nllh μ̂ (se) �̂� (se) �̂� (se) rGEV r20(se) 

1 222.7 111.1 (2.6) 17.2 (1.8) -0.077(0.074) 156.7 (6.2) 

2 379.5 114.5 (1.9) 15.0 (1.2) -0.056(0.057) 155.6 (5.6) 

3 515.4 117.3 (1.8) 14.8 (0.9) -0.097(0.040) 155.6 (4.4) 

4 632.2 118.3 (1.7) 14.3 (0.8) -0.099(0.035) 155.0 (4.1) 

5 732.0 118.6 (1.6) 13.7 (0.8) -0.088(0.033) 154.3 (4.0) 

6 829.6 118.8 (1.5) 13.4 (0.7) -0.086(0.031) 154.0 (3.9) 

7 916.5 119.1 (1.5) 13.2 (0.7) -0.090(0.029) 153.6 (3.7) 

8 995.7 119.6 (1.4) 13.1 (0.7) -0.097(0.025) 153.3 (3.4) 

9 1064.3 119.8 (1.4) 12.9 (0.6) -0.098(0.024) 153.0 (3.3) 

10 1139.1 120.5 (1.4) 12.8 (0.6) -0.113(0.020) 152.8 (2.9) 

 21 

r nllh μ̂ (se) �̂� (se) �̂� (se) ℎ̂ rK4Dr20(se) 

1 221.8 120.0 (5.2) 9.0 (2.4) -0.16 (0.057) -1.67 (1.34) 156.7 (6.2) 

2 372.6 116.9 (2.4) 10.2 (1.3) -0.23(0.064) -1.31 (0.58) 155.6 (5.6) 

3 499.8 118.0 (2.1) 10.4 (1.1) -0.10 (0.051) -1.03 (0.32) 155.6 (4.4) 

4 610.6 117.2 (1.9) 10.9 (1.0) -0.10(0.048) -0.83 (0.24) 155.0 (4.1) 

5 705.4 116.9 (2.0) 11.5 (1.1) -0.13(0.050) -0.77 (0.21) 154.3 (4.0) 

6 803.8 117.0 (1.9) 12.0 (1.1) -0.10(0.052) -0.61 (0.17) 154.0 (3.9) 

7 889.4 116.9 (1.8) 12.2 (1.0) -0.08(0.048) -0.49 (0.14) 153.6 (3.7) 

8 961.9 117.1 (1.8) 11.9 (0.9) -0.06(0.042) -0.49 (0.13) 153.3 (3.4) 

9 1023.0 117.2 (1.8) 11.8 (0.9) -0.06(0.039) -0.52 (0.13) 153.0 (3.3) 

10 1089.1 117.2 (1.7) 11.4 (0.8) -0.03(0.033) -0.49 (0.12) 152.8 (2.9) 

 22 

The 20-year return levels and its standard errors (SE) decrease with r in rGEVD, 23 

whereas those values for rK4D do not show a monotonic decrease. This phenomenon for 24 

the return levels of the rK4D is probably explained by that the return level and its SE are 25 

obtained for the annual maximum while the rK4D is fitted to the r-largest order statistics. 26 

Because the parameter estimates of the rK4D are obtained to take account into all data up 27 

to the r-largest observations, it may not work good for the annual maximum only. 28 

This phenomenon may be more serious for the rK4D than the rGEVD because the 29 

standard errors of the return levels of the rK4D are greater than those of the rGEVD. This 30 



Proceedings 2021, 65, x FOR PEER REVIEW 5 of 7 
 

 

is a re-confirmation of the general rule that the model with more parameters usually re-1 

sults in bigger variance (and less bias) than the model with fewer parameters (James et al. 2 

2013). 3 

 4 

Table 2. The Akaike information criteria (AIC), the Bayesian information criteria 5 

(BIC), and the trace and the log determinant of the covariance matrix (V) of the parameter 6 

estimates which are obtained from the r-largest order statistic models (the rGEVD and the 7 

rK4D) fitted to Venice sea-level data with different values of r. 8 

r rGEVD rK4D 

AIC BIC tr(V) log|V| AIC BIC tr(V) log|V| 

1 451.4 457.2 10.16 -2.31 451.7 459.4 34.72 -3.56 

2 764.9 770.7 5.12 -4.55 753.2 761.0 7.92 -6.14 

3 1036.9 1042.6 4.16 -6.01 1007.5 1015.2 5.49 -7.73 

4 1270.5 1276.3 3.49 -6.98 1229.1 1236.9 4.84 -8.83 

5 1469.9 1475.7 3.06 -7.63 1418.7 1426.4 5.01 -9.31 

6 1665.3 1671.1 2.86 -8.09 1615.5 1623.2 4.85 -9.84 

7 1839.0 1844.8. 2.67 -8.60 1786.7 1794.5 4.41 -10.68 

8 1997.4 2003.2 2.48 -9.10 1931.7 1939.4 4.05 -11.22 

9 2134.6 2140.4 2.34 -9.48 2054.0 2061.7 4.00 -11.48 

10 2284.2 2292.0 2.16 -10.06 2186.2 2194.0 3.41 -12.25 

 9 

Table 2 provides the Akaike information criteria (AIC), the Bayesian information cri-10 

teria (BIC), and the trace and the determinant of the covariance matrix (V) of the parame-11 

ter estimates. The AIC and the BIC are defined as 12 

 13 

AIC(p) =  −2𝑙(�̂�) + 2𝑝, BIC(p) =  −2𝑙(�̂�) + 𝑝𝑙𝑛(𝑚) 14 

 15 

where 𝑙(�̂�) is the log-likelihood function evaluated at the parameter estimates �̂�, m 16 

is the sample size, and p is the number of parameters. In Venice sea-level data, m=50. 17 

These criteria are employed to select a preferred model by the rule that smaller is better. 18 

The trace tr(V) is the sum of variances, and the determinant |V| is interpreted as the vol-19 

ume of V occupied by the probability dispersion it describes. The |V| is thus sometimes 20 

called the generalized variance. It increases as the variances of parameter estimates in-21 

crease; but also decreases as the correlations among the parameter estimates increase 22 

(Wilks 2011). 23 

In Table 2, the AIC and the BIC are smaller in the rK4D for each r than the corre-24 

sponding values in the rGEVD, except for the case r=1. The rK4D is preferable to the 25 

rGEVD for every r except for r=1. The tr(V)s in the rK4D for each r are greater than those 26 

in the rGEVD, whereas the log|V|s in the rK4D are smaller than those in the rGEVD. This 27 

means that there are more correlations among parameter estimates in the rK4D than in 28 

the rGEVD. The tr(V) and the log |V| in the rK4D (and in the rGEVD) decrease monoton-29 

ically as r increases. The biggest decreases in these values occur at the change from r=1 to 30 

r=2. That is, the variance decreases relatively a lot while the bias is not much increase, as 31 

r changes from 1 to 2. This observation leads to the interpretation that the biggest benefit 32 

of employing the rK4D over the K4D is obtained at r=2, for this data. 33 
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 1 

Figure 3. Quantile-per-quantile plots obtained from the largest order statistics for the rK4D fit and 2 

for the rGEV fit to Venice sea-level data with several values of r. 3 

Figure 3 shows quantile-per-quantile plots obtained from the largest (s=1) order statistics for 4 

the rK4D fit (red points) and for the rGEV fit (blue points) to Venice sea-level data with several 5 

values of $r$. In this figure, one can see that the rK4D fits the data better than the rGEVD. We thus 6 

infer the rK4D provides less biased predictions than the rGEVD, because the rK4D with 4 parame-7 

ters is more flexible than the rGEVD with 3 parameters. 8 

4. Conclusion and discussion 9 

 10 

In this study, we introduced the r-largest four parameter kappa distribution (rK4D). 11 

Application to Venice sea-level data is presented with comparison to the r-largest GEVD. 12 

This study illustrates that the rK4D gives better fitting or less biases but larger variances 13 

of the parameter estimates than the rGEVD. The pdf definition of the rk4d may not be 14 

unique, because it is not a result from any theoretical derivation but just an analogous 15 

extension from the K4D and the rGEVD. A point process approach for extremes (Smith 16 

1989; Coles 2001) may provide a theoretical insight. The rK4D, as an extension of the 17 

rGEVD, can serve to model the r-largest observations flexibly with less bias than the 18 

rGEVD, specially when three parameters in the rGEVD are not enough to capture the var-19 

iability of observations well. Even though there are defects such as larger estimation var-20 

iance in the rK4D compared to the rGEVD, the introduction of the rK4D will enrich and 21 

improve our modelling methodology for extreme events. 22 

 23 
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