Picorna-like Virus Discovered in Wild Lime Psyllid *Leuronota fagarae* Burckhardt (Hemiptera: Psylloidea)

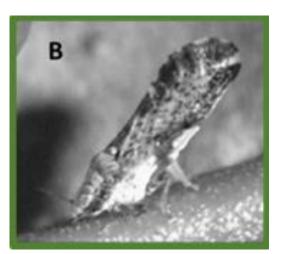
The 1st International Electronic Conference on Entomology July 1-15, 2021

Douglas S. Stuehler^{1,2*}, Wayne B. Hunter²*, Yisel Carrillo-Tarazona³, Hector Espitia³, Tracey Bell⁴, Hannah R. Mann⁵, Sasha-Kay V. Clarke⁶, Joseph M. Cicero⁷, Jawwad A. Qureshi⁸, Liliana M. Cano³*

Douglas S. Stuehler 1,2*

Agricultural Research Service

Background


Diaphorina citri (Asian citrus psyllid)

- ▶ Is a vector of the bacterium, *Candidatus* Liberibacter asiaticus, agent of Huanglongbing (HLB).
- HLB is the single most devastating disease of citrus trees, existing as a threat to world citrus production.
- Leuronota fagarae (Wild lime psyllid)
 - Invasive species in the state of Florida, U.S.A., with South American origin.
 - Currently uncharacterized vector capabilities, is not a pest, or known vector of pathogens.

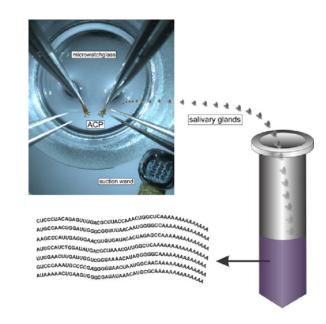
Leuronota fagarae

Russell, Qureshi, Halbert, Stansly, 2014. Florida Entomol. 97 (4): 1481-1492.

Diaphorina citri

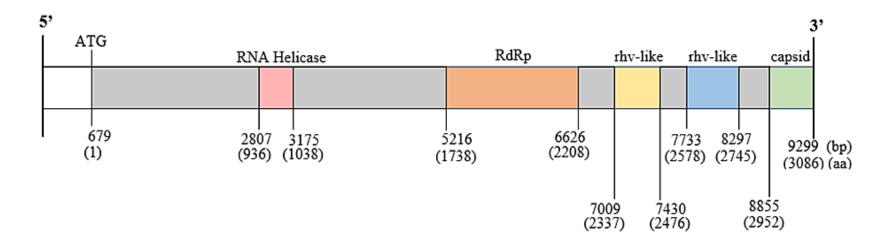
Research Goal

- Produce genome & transcriptome for bioinformatic analyses for comparative characterization of *Leuronota fagarae* with *Diaphorina citri*, in Florida, USA.
 - Further insight into the diverse vector capabilities of *Leuronota fagarae*.
 - Identification of psyllid pathogens, and the microbiome.
 - Accelerate pathogen discovery, for use in the management of psyllid vectors.


Mating *Leuronota fagarae* Russell, Qureshi, Halbert, Stansly, 2014. Florida Entomol. 97 (4): 1481-1492.

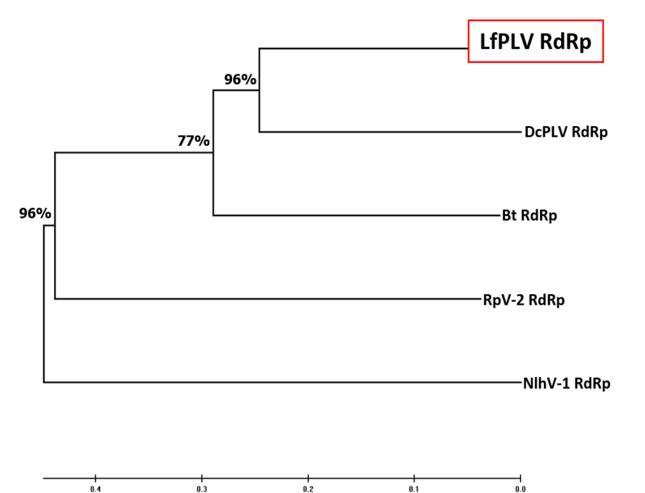
Data Collection

- Leuronota fagarae colonies were maintained at Department of Plant Industry, DPI, Gainesville, Florida, and at the University of Florida, Indian River Research and Education Center in glass houses maintained at 27 °C and 60% RH.
- Salivary glands were dissected from 900 live adult psyllids, immediately placed into TRIzol™-LS Reagent.
- The cDNA library was constructed from the salivary gland extractions and sequenced at the University of Florida, Core Genomics Facility, Gainesville, FL, USA.


USDA Research Service

Bioinformatic Analysis

- Reads were assembled with the TRINITY assembly program.
- Assembled orthologs were translated and subject to BLASTp analysis.
 - ▶ Top alignments identified significant E-values to invertebrate picorna-like viruses.
 - ▶ Top alignment was to *Diaphorina Citri* picorna-like virus.
- Further analysis revealed the near-complete CAP3 genome assembly of a newly identified viral species, existing in *Leuronota fagarae*, Florida-isolate.
 - RdRp sequences were identified from 20 other closely related insect infecting picornaviruses and aligned with ClustalW.
 - The resulting alignment was used to build a Neighbor-Joining phylogenetic tree.



Gene Map

Genome map of draft genome LfPLV. Identified proteins with identified coding regions from ClustalW alignments to known D. citri coding regions previously identified. Numbers in parentheses are amino acids.

Phylogenetic Analysis

Phylogenic tree RdRp amino acid sequence alignments, Top 4, depicting evolutionary relations of five RdRp nucleotide sequence identified through multiple alignments using ClustalW and translation on the ExPASy server. LfPLV was most closely related to Diaphorina citri-Picorna-like Virus.

Alignments

Score: 634 bits(1634) Expect: 0.0 Method: Compositional matrix adjust. Identities: 301/466(65%) Positives: 369/466(79%) Gaps:3/466(0%)

LfPLV	1	QSNIIPSLCHGRFPVATEPAPLSPFDPRLPEGCSPMYMGVAKHGKPIVGFPKDLMEFGFE +S+I+PSLCHG F V TEPAPLS DPRLP G PM +GV KHGKPI GFP DL++FGFE	60	A
DcPLV	1414	KSSIVPSLCHGIFEVMTEPAPLSRSDPRLPPGTDPMILGVNKHGKPIRGFPSDLIKFGFE	1473	۵
Query	61	SLKALMRVQIQPIIPLKALSIQEAICGRPGIQGFSPINFSTSEGFPLMAYREGGAVGKKY SL++++RV+++P+I + S++EAI GR GI GF+ IN +SEGFPL A + G GKKY	120	S
Sbjct	1474	SLRSIVRVRVKPLIKVTPTSLEEAILGRAGIGGFASINMHSSEGFPLSALKPPGVTGKKY	1533	E
Query	121	LFDLELTDEGYIVNGIDDKLKTILAIKQNLRENGIIPFTVFTDCLKDARIAKEKCSIPGK LFD +L + + GID+ LKTI++IK LR+ G +PFTVFTDCLKDARIAKEKC IPGK	180	٦
Sbjct	1534	LFD TE T T GIDT EKITTIK EKT G TFFIVFIDELKDARIAKEKE IFGK LFDCDLDKKELYGIDENLKTIMSIKDGLRKKGKVPFTVFTDCLKDARIAKEKERIPGK	1591	t
Query	181	TRVFSTSPVDFSIQCRQYLLPYTIAHQGSRNEFSTAVGINVHGPEWTHLVRNMVGFSDHQ TR+FS SPVDFSIQ RQY LPYT+AHQ SR +FS+AVGINV+G EW+ LV M+ FS +Q	240	ĉ
Sbjct	1592	TRIFSVSPVDFSIQFRQYFLPYTVAHQNSRWDFSSAVGINVNGVEWSVLVGKMIRFSPYQ	1651	F
Query	241	LCGDYSNFGAGFDCNVHRKVGEAIMDWFDFHGC-PEEDQRVREILLTELVYPWHLCFNTI LCGDYSNFGAGFD VHR VGE ++DWF F+G EE++ +R ++L ELVYPWHLC + +	299	F
Sbjct	1652	LCGDYSNFGAGFDEEVHRMVGEILIDWFKFNGDDSEENETIRRVMLHELVYPWHLCKDIL	1711	
Query	300	YQTYSGMPSGSPITVETNDLVNLYYILMAWHEIMSSEKMQSLNQFRKFVKVKTYGDDIWM YQT SGMPSGSPITVETNDLVNLYYILM W +IM K+ +L +F K+V+VKTYGDDIWM	359	
Sbjct	1712	YQTVSGMPSGSPITVEINDLVNLYYILMMWFDIMRPLKLHTLKKFEKYVRVKTYGDDIWM	1771	
Query	360	AVHDRVIKYFNNVSISQFFAKYGVVYTDADKTGDMVPSKSWREVSFLKRTPIEHPTRSGC AVH VI+YFNN++IS+ FA+YGV YTDADK G P +SW EVSFLKRTP HPTR	419	
Sbjct	1772	AVH VITIFNNTTIST FATIGV HIDADK G P TSW EVSFLKKIP HPIK AVHPDVIEYFNNMTISKAFAQYGVEYTDADKKGMDKPYRSWEEVSFLKRTPKVHPTRLNH	1831	
Query	420	YLAQLDLRSSLDIANWCWKSKDIKSATVVNLESCSDSLYGTGPKTH 465		
Sbjct	1832	+LA LDL S+LDIANWC++S D+ +T+VNLE+CSD +YG GP+ H FLAALDLNSTLDIANWCYESNDMAVSTLVNLEACSDMMYGHGPEKH 1877		

Alignment of LfPLV and DcPLV RdRp amino acid sequences in NCBI BLASTp. Agricultural Research

Service

- Top row of each line is the LfPLV RdRp amino acid sequence.
- Bottom rows are DcPLV RdRp.

Conclusion

- We report on the discovery of a new picorna-like virus infecting Leuronota fagarae (Hemiptera: Psylloidea), with the proposed name: "Leuronota fagarae picorna-like virus, LfPLV-FL, Florida isolate, 2021."
- The research focus is to identify viruses that infect psyllids, which may have use as expression vectors for RNAi biopesticides to control psyllid vectors.
- Further bioinformatic analyses and *in vivo* studies will provide information for the final classification of LfPLV taxonomy.
- The discovery of viruses that infect psyllids provides a valuable resource that can be used for psyllid pest management.
- Ultimately development of biopesticides for controlling the Asian citrus psyllid, D. Citri, and other psyllid vectors of economically important pathogens is our goal.

Organizations and Acknowledgements

1. *Douglas S. Stuehler, ORISE participant, DOE/USDA, ARS, Fort Pierce, FL 34945, USA.

Email: douglas.stuehler@gmail.com

2. *Wayne B. Hunter, USDA, ARS, 2001 South Rock Road, 2001. South Rock Road, Fort Pierce, FL 34945, USA. Email:

wayne.hunter@usda.gov

3. Yisel Carrillo-Tarazona. University of Florida, Indian River Research and Education Center, 2199 South Rock Road, Fort Pierce, FL 34945, USA. Email: <u>yiselcarrillotar@ufl.edu</u>

<u>3</u>. Hector Espitia, University of Florida, Indian River Research and Education Center, 2199 South Rock Road, Fort Pierce, FL 34945, USA. <u>Email: hespitianavarro@ufl.edu</u>

<u>4.</u> Tracey Bell, Dept. Cell & Mol. Biol., Florida State University, 319 Stadium Drive, Tallahassee, FL 32306.<u>Email:</u>

tnb18@my.fsu.edu

<u>5</u>. Hannah R. Mann, HRM, Ft. Pierce, FL, 34949, USA. <u>Email:</u> <u>HannahRMann@gmail.com</u>

<u>6</u>. Sasha-Kay V. Clarke, University of the West Indies, Kingston, Jamaica, Email: <u>sashakayclarke@yahoo.com</u>

7. Joseph M. Cicero, University of Arizona, School of Plant Sciences, Tuscon, AZ. Email: jmc6@email.arizona.edu
8. Jawwad Qureshi, University of Florida, Southwest Florida Research and Education Center (SWFREC), 2685 SR 29 North Immokalee, FL 34142. USA. Email: jawwadq@ufl.edu
3.*Liliana M. Cano, University of Florida, Indian River Research and Education Center, 2199 South Rock Road, Fort Pierce, FL 34945, USA. Email: <u>lmcano@ufl.edu</u>

Funding in part: USDA, National Institutes of Food and Agriculture USDA, NIFA, National Institute of Food and Agriculture, Citrus Greening award #2015-70016-23028, "Developing an Infrastructure and Product Test Pipeline to Deliver Novel Therapies for Citrus Greening Disease", Lead PI: Dr. S. Brown, Kansas State University, KS, USA.

This research was supported in part by an appointment to the Agricultural Research Service (ARS) Research Participation Program administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA).

ORISE is managed by ORAU under DOE contract number DE-SC0014664. All opinions expressed in this paper are the author's and do not reflect the policies and views of USDA, ARS, DOE, or ORAU/ORISE.