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Abstract: This study outlines the use of an electronic nose as a method for the detection of VOCs as 10 

biomarkers of bladder cancer. Here an AlphaMOS FOX 4000 electronic nose was used for the anal- 11 

ysis of urine samples from 15 bladder cancer and 41 non-cancerous patients. The FOX 4000 consists 12 

of 18 MOS sensors that were used to differentiate the two groups. The results obtained were ana- 13 

lyzed using MultiSens Analyzer and RStudio. The results showed a high separation with sensitivity 14 

and specificity of 0.93 and 0.88 respectively, using a Sparse Logistic Regression and 0.93 and 0.76 15 

using a Random Forest classifier. We conclude that the electronic nose shows potential for discrim- 16 

inating bladder cancer from non-cancer subjects using urine samples.  17 
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1. Introduction 20 

Bladder cancer (BC) is the eighth most common cancer worldwide. In the UK, there 21 
were 12,434 new cases and 6,458 fatalities in 2020 [1]. Fortunately, the survival rate for 22 

bladder cancer remains good, with almost every 3 out of 4 people surviving the disease 23 
for one or more years [2]. Even with this high survival rate, there has been no significant 24 
improvement over the past 10 years. The most common BC screening methods are cys- 25 

toscopy, urine cytology, and urine tests, including bladder tumor antigen (BTA) test, nu- 26 
clear matrix protein 22 (NMP22), urinary bladder cancer antigen (UBC), and fibrin degra- 27 

dation products (FDP) [3,4]. Unfortunately, none of these are effective enough for early 28 
diagnosis of BC and they are both expensive and invasive [5,6]. Therefore, there is a need 29 
for a more disease-specific, non-invasive, highly sensitive and low-cost screening test for 30 

BC.  31 
The use of Volatile Organic Compounds (VOCs) has provided a new perspective for 32 

the early detection of cancer. The alterations in VOCs emitted from the body reflect the 33 
changes inside the body caused by this disease. VOCs can be measured from a range of 34 
different biological sources including urine [7], saliva [8], breath [9], feces [10] and blood 35 

[11]. Measuring VOCs can be simple and non-invasive, mapping well onto the needs of a 36 
screening test [12]. Different studies have previously been performed to analyze VOCs to 37 

diagnose BC, mainly focused on urine and faeces [13,14]. The most common approach is 38 
to use GC-MS (Gas Chromatography-Mass Spectrometry). However, the analysis time is 39 
long (tens of minutes) and it is expensive, both in terms of equipment and running costs 40 

[15]. An alternative is to use an electronic nose (eNose), an instrument designed to mimic 41 
the human olfactory system. The eNose is widely used in the food and beverage industry 42 

[16], environment control, pharmaceutical companies [17] and biomedical applications 43 
[18]. There have been several previous studies that have been undertaken for the detection 44 

of bladder cancer using the eNose. Van De Goor et al. used breath to distinguish head and 45 
neck, colon and bladder cancer using an electronic nose [19]. Another study conducted by 46 
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Bernabei et al. was able to identify 100% of patients with urinary tract cancer (bladder and 47 
prostate cancer combined) from healthy controls [20]. A further study showed that blad- 48 
der cancer was identified with the use of fluorescence urinary VOCs detection with a sen- 49 

sitivity of 84.2% and a specificity of 87.8% [21]. 50 
In our study, we aimed to identify and test the potential of urinary biomarkers to 51 

distinguish between BC and non-cancerous groups using an electronic nose. This is the 52 
first study conducted using an AlphaMOS FOX 4000 eNose to identify bladder cancer 53 
from non-cancerous samples using urinary VOCs. 54 

2. Materials and Methods 55 

2.1. Study Design 56 

A total of 56 patients were recruited at University Hospital Coventry & Warwickshire 57 
NHS Trust, UK. This study was approved by Coventry and Warwickshire and North-East 58 
Yorkshire NHS Ethics Committees (Ref 18717 and Ref 260179). Out of 56 patients, 15 were 59 

confirmed with BC, and 41 non-cancerous (symptoms suggestive of but excluded after 60 
further investigations). The demographics for these groups are shown in Table 1. 61 

Table 1. Demographic for the study. 62 

Group Bladder cancer Non-Cancerous 

Number of samples 15 41 

Mean Age (years) 70.0 (90-50) 62.5 (90-32) 

Sex: Male/Female 12:3 24:12 

Avg. BMI 24.4 (27.4-19.8) 30.9 (37.3-22.4) 

Current Smoker 

(number and % of patients) 
1 (6.7%) 3 (8.3%) 

The samples were collected and stored in standard sterile specimen containers and 63 
frozen within 2 hours at -80oC. The samples were then shipped to University of Warwick 64 
for testing, where the samples were defrosted in a laboratory fridge at 4oC and 3ml of 65 

sample aliquoted into 10 mL glass vials [22]. 66 

2.3. AlphaMOS FOX 4000 (Toulouse, France) 67 

The AlphaMOS Fox 4000 is an eNose that comprises 18 commercial metal oxide sen- 68 
sors (MOS) distributed in three temperature-controlled chambers. There are 6 p-type sen- 69 

sors and 12 n-type sensors. The output of the sensors is measured as resistance. The FOX 70 
4000 is fitted with a CombiPAL HS-100 auto-sampler using a 2.5 mL gas syringe. In testing, 71 

the samples were placed in the autosampler, then were agitated and heated to 40oC for 10 72 
minutes. The headspace was then injected into the eNose at a rate of 200 mL/min into a 73 
flow of 150ml/min of zero air. Each sample was analyzed for 180 seconds by all the 18 74 

MOX sensors. 75 

2.4. Statistical Analysis 76 

The sensors responses were extracted using AlphaSoft (AlphaMOS v12.36) and then 77 

analyzed using MultiSens Analyzer (JLM Innovation GmbH, Germany) and RStudio (Ver- 78 
sion 1.4.1106). AlphaSoft is a software product developed to control AlphaMOS instru- 79 
ments. The output generated by the program was processed and exported in ASCII format. 80 

These files were further analyzed using MultiSens Analyzer (JLM Innovation GmbH, Ger- 81 
many) for multivariate analysis. Due to the high dimensionality of the data, the maximum 82 

change in resistance was extracted per sensor and used as the input features for a PCA 83 
(Principal Component Analysis) and an LDA (Linear Discriminant Analysis). The feature 84 
matrix was also exported and further processed using a custom analysis pipeline created 85 

in RStudio. Here, 10-fold cross-validation was performed where the data was divided into 86 
10 equally sized groups, with 9 groups being used for model training and then applied to 87 
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the 10th group as a test set. This was repeated 10 times until all the samples had been in a 88 
test group. SMOTE (Synthetic Minority Over-Sampling Technique) was performed on the 89 
data groups because of the high imbalance in the sample size for BC and the non-cancer- 90 

ous group. It generated syntenic balanced, which were then used to train the classifier [23]. 91 
This was undertaken inside the training fold so as not to affect the test result. Two classi- 92 

fication models were applied to the data, specifically Random Forest (RF)and Sparse Lo- 93 
gistic Regression (SLR), which we have successfully used before in similar studies [24]. 94 
From the resultant probabilities, statistical parameters were calculated including Receiver 95 

Operator Characteristic (ROC) curve, area under the curve (AUC), sensitivity, specificity, 96 
positive predictive value (PPV), and negative predictive value (NPV). 97 

3. Results 98 

The typical output from the FOX 4000 eNose is shown in Figure 1, where each curve 99 

represents the response of a sensor to a BC urine sample. Here the sensor response is de- 100 
fined as intensity, which is the change in resistance from the baseline divided by the base- 101 

line resistance. 102 

 103 

Figure 1. A typical output from AlphaMOS FOX 4000 to a BC urine sample. 104 

The PCA results obtained from MultiSens Analyzer are shown in Figure 2. The data 105 

shows that most of the sample variance can be plotted in the first principal component 106 
(85.3%). Furthermore, that there is reasonable separation (though not perfect) between the 107 
BC and non-cancerous groups. 108 

 109 

Figure 2. PCA output from BC and non-cancerous groups. 110 
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LDA was also performed on the data, as shown in Figure 3, to show the maximum 111 
potential separation between BC and Non-cancer samples.  112 

 113 

Figure 3. LDA output from BC and non-cancerous groups. 114 

Finally, output statistical parameters were calculated, the results of which are shown 115 
in Table 2. 116 

Table 2. Statistical output from FOX. 117 

 Sparse Logistic Regression Random Forest 

AUC 0.92 (0.85-0.99) 0.86 (0.76-0.97) 

Sensitivity 0.93 (0.68-0.99) 0.93 (0.68-0.99) 

Specificity 0.88 (0.74-0.96) 0.76 (0.59-0.88) 

PPV 0.74 0.58 

NPV 0.97 0.97 

The highest separation between the BC and non-cancerous group was obtained using 118 

Sparse Logistic Regression with an AUC (Area Under the Curve) of 0.92. The sensitivity 119 
and specificity obtained were 0.93 and 0.88 respectively. The high sensitivity and specific- 120 
ity signify that the SLR correctly predicted 36 out of 41 non-cancerous patients and was 121 

able to identify 14 BC patients out of 15. 122 
The RF classifier was able to achieve a sensitivity of 0.93 with a specificity of 0.76. The 123 

AUC for this classifier was 0.86. With the RF classifier, the model was able to correctly 124 
identify 31 of the non-cancerous samples and 14 BC samples out of 15.  125 

This shows that eNose can distinguish cancer samples from non-cancerous samples. 126 

The ROC curve for random forest classifier distinguishing BC and the non-cancerous 127 
group is shown in figure 3. 128 
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(a) (b) 

Figure 3. (a) illustrates ROC curve distinguishing BC from Non-cancerous group using Sparse 129 
Logistic Regression and (b) illustrates ROC curve distinguishing BC from Non-cancerous group 130 
using Random Forest classifier. 131 

4. Discussion 132 

In this paper, we have shown that the AlphaMOS FOX4000 Electronic nose was able 133 
to distinguish bladder cancer urine samples from non-cancerous samples based on their 134 
VOC profile. Our findings prove that eNose can be used to accurately separate these two 135 

groups. This is the first study to compare bladder cancer urine samples from non-cancer- 136 
ous samples using this eNose, which has the advantage of being fully automated allowing 137 

large numbers of samples to be tested easily. 138 
In our study, we were able to separate the bladder cancer urine samples from the 139 

non-cancerous group with a high AUC of 0.92 and 0.86 using SLR and RF classifiers, re- 140 

spectively. For the classification of BC and non-cancerous groups using SLR, the sensitiv- 141 
ity and the specificity obtained were 0.93 and 0.88 respectively. The threshold value for 142 

classification of the two groups was 0.13 and the p-value was <0.001. For the RF classifier, 143 
the sensitivity and specificity obtained were 0.93 and 0.76. The threshold value and p- 144 
value were 0.29 and <0.001 respectively.  145 

We found that eNose was able to identify 14 BC samples out of 15, and 36 out of 41 146 
non-cancerous samples using Sparse Logistic Regression classifier. However, our study is 147 

limited by the small number of samples and we did not attempt to identify the specific 148 
VOC biomarkers involved. A previous study with a commercial eNose (Sensigent Cyra- 149 
nose 320) also showed high sensitivity and specificity [14], with comparable results to 150 

those found here. A further limitation of our study was the lack of healthy controls for 151 
comparison. Further investigation is required to understand the specific chemicals asso- 152 

ciated with separating BC from non-cancer and to test samples from a larger patient group. 153 
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