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Abstract: Mycotoxins are the toxic secondary metabolites naturally produced by fungi, their con- 14 

tamination in agricultural products and food severely threaten food safety and public health world- 15 

wide. The reliable, efficient, and sensitive quantification of mycotoxins in food have become increas- 16 

ing challenging to tackle due to the complexity of food matrices and their low level. Visual detection 17 

has emerged as a popular trend toward miniaturization and simplification of mycotoxins assays yet 18 

is constrained with their limited sensitivity. In this review, we mainly focus on the various kinds of 19 

the visual immunoassays by utilizing nanomaterials for loading enzyme and nanozyme. These en- 20 

zymes have been as signal amplification for the improved sensitivity of mycotoxins detection 21 

through the various enzymatic catalytic reaction. Besides, the underlying principle and the ad- 22 

vantages of the visual immunoassays for mycotoxins have been proposed. And the challenges and 23 

perspectives have been proposed to develop improved efficient catalytic detection strategies for 24 

mycotoxins in food. 25 
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1. Introduction 28 

Mycotoxins are toxic secondary metabolites secreted by fungi under suitable temper- 29 
ature and humidity in pre- and/or post-harvest [1-3]. Mycotoxins can affect the quality 30 
and safety of agriculture products, the associated processed foodstuffs, feedstuff, and an- 31 

imals. Over 400 mycotoxins have recently been identified, the worldwide occurrence of 32 
mycotoxins involving aflatoxin (AF), ochratoxin (OT), zearalenone (ZEN), deoxyniva- 33 

lenol (DON), fumonisin (FB), and T-2 toxin [4,5]. It is well known that aflatoxin is the 34 
representative mycotoxins, including AFB1, AFB2, AFG1, and AFG2, which has been con- 35 
firmed to be immunosuppressive, teratogenic, and mutagenic [6,7]. Meanwhile, AFB1 36 

could be metabolized into the toxic hydroxyl metabolite of AFM1, which are widespread 37 
presence of milk and dairy products. Additionally, ZEN with strong estrogenic effect, and 38 

OTA with the neurotoxicity and hepatotoxicity could impose adverse effects on animal 39 
and humans. To protect the humans from exposure mycotoxins, strict standards of limit- 40 
ing mycotoxin level in food and the associated products have been regulated in many 41 

countries worldwide[8]. The monitoring of mycotoxins has been recognized as the signif- 42 
icant way to safeguard food safety. Yet the mycotoxins detection in food matrices is chal- 43 

lenging due to their low levels, and complex food matrices. Accordingly, it is highly 44 
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desirable to conduct the effective, reliable and sensitive analytical strategy for screening 45 
mycotoxins in food matrices. 46 

Nowadays, many efforts have been made to detect mycotoxins in food, involving 47 

instrumental analysis[9-13] and immunoassays[14-16]. The instrumental analysis requires 48 
expensive sophisticated instruments, time-consuming sample preparation process and 49 

well-trained staff, which is not suitable for rapid screening numerous samples, and pre- 50 
clude their wide application in resource-constrained regions [17]. Immunoassays have 51 
been extensively identified as promising specific recognition for quantifying mycotoxins 52 

thanks to their sensitivity, on-site, as well as high-throughput screening capability. The 53 
specific recognition interaction between antibody and antigen have generally favored for 54 

highly selective and reliable monitoring mycotoxins. Various signal transduction tech- 55 
niques have currently been utilized to conduct mycotoxins immunoassays, such as fluo- 56 
rescence [18-20], electrochemistry [21-24], chemiluminescence [25] and colorimetry [26- 57 

28]. Attractively, visual detection, a popular trend toward miniaturization and simplifica- 58 
tion analysis, is capable of direct observing the results by the naked eye without other 59 

sophisticated instruments [29-31]. Currently, various immunoassays involving enzyme- 60 
linked immunosorbent assay (ELISA)[32,33], lateral flow immunoassay (LFI) [34, 35], flow 61 
injection immunoassay[36], and flow immunoassay[37], have been demonstrated as an 62 

excellent platform for discrimination of mycotoxins[7]. Among them, ELISA and LFI 63 
served as the representative visual immunoassay, have attracted continuous interest due 64 

to their advantages of simple, and on-sites for rapid screening mycotoxin. Yet, the sensi- 65 
tivity of these conventional visual detection requires to be improved for monitoring trace 66 
amounts of mycotoxins in complex food matrices. Thus, numerous studies have currently 67 

been devoted to the construction of the visualized immunoassays for enhancing sensitive 68 
sensing mycotoxins via signal amplification. 69 

Recently, the robust enzyme catalytic amplification has been confirmed to enhance 70 
the sensitivity of immunoassays. Particularly, elaborate enzymatic strategies for improv- 71 
ing the limited enzyme amount and the catalytic activity, have been engineered as effi- 72 

cient and sensitive immunoassays for high-performance sensing targeted analytes. The 73 
emerging nanomaterials with unique optical, electrical, magnetic, and catalytic properties 74 

provides new opportunities for improving enzymatic immunoassays[38-42]. More evi- 75 
dences have revealed that the integration of novel nanomaterials promoted the sensitivity 76 
improvements on mycotoxins detection[43-45]. For instance, Au nanoparticles (AuNPs) 77 

functionalized with antibodies, which can effectively discriminate the immune complex 78 
and enzyme to catalytic reaction substrate, significantly elevated their analytical perfor- 79 

mance[46-48]. Accordingly, a combination of nanomaterials and enzymatic immunoas- 80 
says provides a potent signal amplified platform for highly sensitive and specific rapidly 81 
screening of mycotoxins. Herein, we summarize the improvements on signal amplified 82 

immunoassays of mycotoxins by the integration of nanomaterials and enzymatic signal 83 
amplification. The improvements on sensitivity of mycotoxin in food were emphasized 84 

with the assistance of nanomaterials for encapsulation enzyme, enzyme-mediated nano- 85 
materials as the amplified signal readout, and nanomaterials for enzyme-mimics. Chal- 86 
lenges and outlook of mycotoxin detection have been proposed to develop the improved 87 

efficient visual immunoassays in food. 88 

2. The Signal Amplified Strategies 89 

ELISA as a classical enzyme-based visual immunoassay, mainly involves the sorbent 90 

substrate, immuno-recognition and enzyme labels. Typically, the antigen or antibody 91 
serves as sorbent substrate to immobilize onto the supporting material, enzyme-labeled 92 
molecule then immobilized to sorbent via the formation of a bioconjugation, the resultant 93 

detectable signal is recorded with the assistance of chromogenic reagent [49]. The sensi- 94 
tivity of ELISA could be effectively enhanced through improving the absorbent substate, 95 

the recognition element, enzyme-label, or chromogenic reagent. Among them, enzyme 96 
represents the robust signal amplification, which have been extensively utilized to 97 
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develop the highly sensitive immunoassays for trace level mycotoxins because of the cat- 98 
alytically amplified signal. 99 

In the conventional ELISA, peroxidase activity of horseradish peroxidase (HRP) has 100 

been extensively served as signal amplification for catalysis H2O2 into hydroxyl radical 101 
(•OH), which can react with the colorless chromogenic substrate 3,3′,5,5′-tetramethylben- 102 

zidine (TMB), 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) or o-phe- 103 
nylenediamine (OPD) into blue TMBox, green ABTS+•, or yellow OPDox under acidic con- 104 
dition. The colorimetric signal intensity is associated with the anchored HRP-labeled an- 105 

tigen or antibody for catalysis chromogenic substrates [50]. Accordingly, the analytes can 106 
be quantified through a direct method or an enzyme-labeled secondary antibody. In the 107 

previous studies, HRP-labeled antibodies were the most commonly used in the traditional 108 
ELISA to realize the various mycotoxin detection in foods [51-55]. The aforementioned 109 
ELISA adopted enzyme-labeled secondary antibodies through chemical conjugation to 110 

generate signal. Yet the chemical conjugation of enzyme might result in the loss of enzyme 111 
activity, low stability for reagents labeling, and decreased sensitivity and specificity of the 112 

ELISA [56]. More evidences have revealed that the fusion protein has been recognized as 113 
an immunological agent for mycotoxins detection since its good antigen binding and en- 114 
zyme activity. Clearly, a nanobody-alkaline phosphatase (ALP) fusion protein has been 115 

revealed as improved sensitivity for detection of FB1 and OTA in actual argo-products [57- 116 
59]. 117 

Note that the enzyme-labeled antigen or antibody revealed the limited enzyme mol- 118 
ecules. For instance, HRP-labeled conjugate always presented the limited HRP molecules 119 
with approximately 2-3 HRP per antibody [60], which remarkably weaken the enzymatic 120 

signal amplification and the sensitivity of immunoassays. Besides the limited enzyme 121 
molecules, the low economy of the conjugated enzyme might lead to increase the produc- 122 

tion cost of the immunoassays [61-64]. Meanwhile, enzyme-label is susceptible to decrease 123 
or even loss its catalytic activity upon practical detection [65]. Thus, the efficient strategies 124 
of augment enzyme amounts contribute to amplify the sensitivity of visual immunoassay. 125 

Various enzymatic signal amplification immunoassays by using nanomaterials as robust 126 
scaffold for enzyme immobilization, enzyme-mediated nanomaterials for amplified signal 127 

readout, and nanozyme as an alternative for natural enzyme have recently used to im- 128 
prove the enzyme loading and catalytic activity. 129 

2.1. Immobilized Natural Enzymes on Nanomaterials for Amplification 130 

Increasing the enzyme amounts in the final antigen-antibody-enzyme complex facil- 131 

itates the catalysis of the substrate and signal amplification in a single recognition reaction 132 
(Figure 1A). Attractively, nanomaterials can execute as excellent carriers for loading and 133 

immobilizing enzymes by virtue of their large surface area-to volume ratio, high loading 134 
capacity, facile fabrication, ease of functionalization, and high chemical stability. The mul- 135 
tienzymes and antibodies-immobilized on the surface of single nanomaterial to effectively 136 

amplify the detectable signal and thus enhance the sensitivity [66]. The emerging nano- 137 
materials of metal/metal oxides nanoparticles, silica nanoparticles [67], carbon nano- 138 

materials, and metal organic frameworks have been demonstrated as the excellent carriers 139 
for immobilizing natural enzyme for sensitive analysis. For instance, Zhu et al utilized 140 
botryoid-shaped Au/Ag nanoparticles loading HRP–IgG to construct indirect competitive 141 

ELISA for amplified ochratoxin A (OTA) sensing in wheat four samples. The high loading 142 
amount of HRP–IgG onto the Au/Ag nanoparticles contributed to an improved sensitivity 143 

of OTA with the IC50 of 0.05 ng/mL, which revealed a 30-fold improvement compared to 144 
the conventional ELISA [68]. Besides, Li et al [69] developed indirect competitive ELISA 145 
for the total amount of FB1, FB2, and FB3 detection in maize samples based on AuNPs im- 146 

mobilized HRP-goat anti-mouse IgA. The enhanced sensitivity was approximately 10 147 
times compared to the conventional ELISA (Figure 1B). Liu et al [70] developed MOF- 148 

loaded HRP and goat anti-mouse IgG for ZEN detection in argo-products. The LOD of 149 
this immunoassay achieved 0.5 ng/L for ZEN detection, which showed an approximately 150 
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126-fold enhancement relative to conventional HRP-based immunoassay (Figure 1C). Be- 151 
sides to single nanomaterials, polymer-coated nanomaterials as enzyme container have 152 
demonstrated to be the amplified strategies of conventional nanomaterials for further el- 153 

evating the enzyme loading capacity of nanomaterials. SiO2 NPs carrying poly (acrylic 154 
acid) brushes as a “CAT container” were used to amplify the sensitivity of OTA. Xiong’s 155 

group [71] presented a competitive ELISA for OTA in various argo-products by using 156 
CAT-catalyzed the changed plasmonic signal readout of AuNPs. The LOD by naked eye 157 
and microplate reader was 10-18 and 5 × 10−20 g/mL, which was 7 and 8 orders of magnitude 158 

lower than that of CAT-based ELISA (10−11 g/mL by the naked eye) and HRP-based con- 159 
ventional ELISA (10−11 g/mL by the microplate reader) (Figure 1D). 160 

 161 

Figure 1. (A) The improved immunoassays using nanomaterials for immobilization natural en- 162 
zymes; (B) AuNPs-HRP-goat anti-mouse IgA enhanced ELISA for FB1. Reprinted from ref [69]. 163 
Copyright 2018 Royal Society of Chemistry. (C) Zeolitic imidazolate framework-encapsulated 164 
HRP-based ELISA for ZEN. Reprinted from ref [70]. Copyright 2021 Elsevier. (D) SiO2 NPs carry- 165 
ing poly (acrylic acid)@CAT-based ELISA for OTA. Reprinted from ref [71]. Copyright 2016 Amer- 166 
ican Chemical Society. 167 

2.2. Natural Enzyme-Mediated Nanomaterials for Amplified Signal Readout  168 

In addition to the typical chromogenic substrate, natural enzyme-catalyzed products 169 

enable regulate the color change of nanomaterials, especially for plasmonic property of 170 
AuNPs, achieving the visual detection of mycotoxins (Figure 2A). For instance, Xiong’s 171 
group [72] developed a direct competitive ELISA through CAT-mediated AuNPs aggre- 172 

gation using HRP + H2O2 + tyramine system. In this case, phenol polymerization of tyra- 173 
mine by •OH from HRP-catalyzed H2O2 triggered AuNPs aggregation. The competitive 174 

antigen of OTA-labeled CAT was employed to catalyze H2O2 into H2O and O2. AuNPs 175 
appeared monodisperse (red) without OTA, while the AuNPs aggregation (blue) were 176 
observed with OTA. The combined advantages of ultrahigh CAT catalytic activity and 177 

color change of AuNPs contributed to sensitively detect OTA in corn sample. The IC50 and 178 
LOD (IC10) of OTA was 84.75 and 17.8 pg/mL, which revealed a 2.9- and 2.7-fold enhance- 179 

ment compared with the conventional ELISA (Figure 2B). Meanwhile, this group also uti- 180 
lized the GOx-catalyzed product of H2O2, which reduce Au3+ into Au0 on the surface of Au 181 

seeds with an obvious color change for a direct competitive ELISA for FB1 detection in 182 
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maize samples. The IC50 was 1.86 ng/mL, which was approximately 13-fold lower than 183 
that of HRP-based conventional ELISA [73]. Apart from AuNPs, enzyme-assisted etching 184 
of AuNRs triggered visual detection of mycotoxins. HRP-assisted AuNRs-etching direct 185 

competitive ELISA was developed to sensitively detect AFB1 in corn samples. The com- 186 
petitive antigen of AFB1-labeled GOx could catalyze glucose molecule into H2O2, and HRP 187 

simultaneously catalyze H2O2 to form •OH. The rod-like morphology AuNRs was chem- 188 
ically etched to spherical morphology by •OH, leading to visual signal output. The etch- 189 
ing process of AuNRs efficiently occurred without AFB1, yet the blocking of AuNRs etch- 190 

ing was clear presented in the presence of AFB1. The method allowed sensitive determi- 191 
nation of AFB1 with IC50 of 22.3 pg/mL, which enhanced 32 times compared to the tradi- 192 

tional ELISA [74]. 193 

 194 

Figure 2. (A) The enzymes-catalyzed products-mediated nanomaterials for signal readout; (B) 195 
CAT-mediated AuNPs aggregation-based ELISA for OTA. Reprinted from ref [72]. Copyright 2018 196 
Elsevier.(C) HRP-mediated Au nanobipyramids etching process-based immunoassay for ochra- 197 
toxins. Reprinted from ref [78]. Copyright 2019 American Chemical Society. 198 

Although these approaches achieved the superior sensitivity, most of them relies on 199 

traditional single-signal readout mode. And these strategies might encounter the limita- 200 
tion of inaccuracy for mycotoxins evaluation, which was partly ascribed to external inter- 201 

ferences, such as nonstandard test process, different operators or diverse surrounding en- 202 
vironment [75-77]. Recent development in mycotoxins immunoassays enable the integra- 203 
tion of visual and various signal transduction techniques into dual-signal strategies, and 204 

thus offering multi models for mycotoxins detection because of their self-calibration. 205 
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Typically, by using the changed multiple color and LSPR shifts of Au nanobipyramids 206 
etched by •OH generated from HRP-catalyzed H2O2, Wei et al [78] developed an im- 207 
proved colorimetric and photoelectrometric immunoassay for ochratoxins. The nanolipo- 208 

somes as the vehicle for carrying more secondary antibody and encapsulating HRP sig- 209 
nificantly amplified the detection signal, allowing the sensitive simultaneous detection of 210 

three ochratoxins (OTA, OTB, and OTC). The dual-modality immunoassay presented a 211 
high sensitivity with LOD of 0.7 and 1.7 ng/L, respectively. Attractively, the dual-modality 212 
response immunoassays showed a more accurate and reliable outcome compared with 213 

single modality (Figure 2C). 214 

2.3. Nanozyme for Signal Amplification 215 

Natural enzymes are extensively used in countless laboratories, medical and food 216 
safety, whereas their activities were susceptible to the extreme environment (e.g., Heat, 217 

pH, organic solvents, mechanical stress, heavy metal) and the limited practical applica- 218 
tions (e.g., the preparation, reaction, and storage requirements), leading to their poor op- 219 

erational stability, low recyclability and high expense [79-81]. Nanomaterials-based artifi- 220 
cial enzymes (nanozyme) are particularly attractive since the discovery of Fe3O4NPs with 221 
peroxidase-like activity by Yan’s group in 2007 [82]. Nanozyme are excellent candidates 222 

for alternative natural enzyme due to their high stability, economy, durability and func- 223 
tionalization. Various nanozyme have been served as catalytic label for multi-category 224 

signal amplification in newly developed immunoassays. Nowadays, numerous studies 225 
revealed that metal NPs (Au, Ag, Pt, Pd) [83,84], metal oxide NPs (Fe3O4, CeO2, MnO2, 226 

CuO) [85-90], carbon-based (graphene oxide, carbon nitride, carbon dots)[91-94], and 227 
MOF-based nanomaterials [95-97] with peroxidase-, catalase-, oxidase-, superoxide dis- 228 
mutase-mimicking properties. And these nanozyme have been designed to amplified 229 

sensing of mycotoxins (Figure 3A). For example, Xu et al [98] developed an indirect com- 230 
petitive MOF-linked immunosorbent assay for the high throughput and sensitive detec- 231 

tion of AFB1 grain drinks. Peroxidase-like activity of MOF (MIL-88) was conjugated to 232 
secondary antibody to substitute natural HRP-labeled secondary antibody. The MOF- 233 
based immunoassay allowed to sensitively detect AFB1 with the LOD of 0.009 ng/L with 234 

20 times improvement compared to the conventional ELISA. The enhanced sensitivity 235 
might arise from their well dispersity, more active sites and pores of MOFs-labeled anti- 236 

body promoted the catalytic reaction between MOFs-labeled antibody nanozyme and 237 
substrate. Significantly, the immunoassay could successfully decrease the occurrence of 238 
false positives and false negatives during the detection of AFB1 (Figure 3B). Besides, Zhu 239 

et al [99] developed a competitive ELISA was constructed to sensitively monitor OTA in 240 
millet samples (LOD: 0.47 ng/L) through octahedral Cu2O nanoparticles etching of Au 241 

nanobipyramids. Peroxidase-mimicking activity of Cu2O could oxidize TMB in the pres- 242 
ence of H2O2, and the yellow product TMB2+ could etch the Au nanobipyramids, triggering 243 
a significant longitudinal peak blue shift of local surface plasmon resonance. In this case, 244 

dopamine-coated microplate was used to capture OTA antigens, and followed by the im- 245 
munoreaction between OTA antibodies and the Cu2O-labled secondary antibody. The 246 

growing concentration of OTA resulted in a decrease of Cu2O-labled secondary antibody 247 
amount, further imposing adverse effects on the generation of catalytic product TMB2+ 248 
and the etching process of AuNRs (Figure 3C). 249 

Apart from the single nanozyme for signal amplification, multienzyme-based cas- 250 
cade catalysis is another important strategy for signal transduction and amplification. In 251 

the cascade catalytic system, the decreased diffusion path of intermediates between the 252 
enzymes enables the improvement of unstable intermediates, which facilitated their effi- 253 
ciency and specificity [100,101]. Meanwhile, the single substrate can be converted into 254 

more signal molecule through the multienzyme-associated continuous catalysis reaction, 255 
and contributes to the signal amplification [66,81,102]. Lai et al [103] proposed a competi- 256 

tive cascade amplified immunoassay for AFB1 detection in peanut samples by combina- 257 
tion of AOx/anti-AFB1 antibody-labeled AuNPs and oxidase-mimics MnO2. With 258 



Chem. Proc. 2021, 3, x FOR PEER REVIEW 7 of 4 
 

 

assistance of ascorbic acid (AA), blue MnO2-TMB system was converted into colorless be- 259 
cause of the dissolution of MnO2 into Mn2+. Once introduced AOx, the color change could 260 
be suppressed since AOx catalysis AA to dehydroascorbic acid. The cascade signal ampli- 261 

fication remarkably improved the sensitivity of AFB1 with LOD of 6.5 pg/mL, which ap- 262 
proximately enhanced 15-, 7-, and 38-fold comparative to the existing commercialized 263 

AFB1 kits (e.g., QuickingBiotech:100 ppt; Max Signals: 50 pg/mL; MyBioSource:250 pg/mL) 264 
(Figure 3D). Similarly, Lai further developed a competitive immunoassay for sensitive 265 
screening AFB1 (LOD: 0.1 ng/mL) based on the just-in-time generation of an oxidase-mim- 266 

ics MnO2 through the reaction KMnO4 and Mn2+ with the assistance of AOx [104]. 267 

 268 

Figure 3. (A) Nanozyme-based immunoassays; (B) MOF-linked immunosorbent assay for AFB1 269 
detection. Reprinted from ref [98]. Copyright 2021 Elsevier.(C) Peroxidase-like activity of Cu2O- 270 
based immunoassay for OTA detection. Reprinted from ref [99]. Copyright 2021 Springer Nature. 271 
(D) MnO2-AOx cascade amplified immunoassay for AFB1 detection[103] Reprinted from ref [103]. 272 
Copyright 2017 Elsevier. 273 

Similar to ELISA, LFI is another important visual immunoassay for nanomaterials- 274 
labeled one-step immunochromatographic paper-based point of care tests. LFI is widely 275 

adapted to detect mycotoxins in food safety owing to its low cost, rapidly, and ease of use 276 
[105-107]. The components of LFI mainly include sample pad, nitrocellulose (NC) mem- 277 
brane containing the test and control zones, conjugate and absorbent pads from cellulose, 278 

and a polyvinyl chloride backing card for assembling the components [108]. Once 279 
dropped sample solution to the sample pad, it can migrate along the strips driven by ca- 280 

pillary forces [109]. And then, the sample dissolves the detection reagent in the conjuga- 281 
tion pad, followed by flows along the strip within the porous membrane, where the ana- 282 
lyte and the signal reporter were captured on the test line, thereby leading to the genera- 283 

tion of a detectable signal. AuNPs is the common signal labeled material for visual output 284 
through non-covalent electrostatic adsorption of antibodies or antigens[110]. Au nano- 285 

materials-based LFI have been extensively developed for analysis multiplex mycotoxins 286 
including FB1[111], AFB1[112], OTA[113], ZEN[114] etc. Besides, natural enzymes also 287 
provide signals through conjugating to mycotoxin-protein, and executed as the signal 288 

transducer to achieve visual detection [115], such as HRP-labeled antibodies or /antigen 289 
for immunological recognition for construction LFI[116,117]. Nowadays, numerous 290 

nanozyme have been used to label antibody or antigen for visual rapid detection in LFI. 291 
The evidence of Fe3O4 nanozyme for enhanced detection Ebola virus with 100 times 292 
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enhancement compared to the conventional AuNPs-based LFI, revealing the signal am- 293 
plification ability of nanozyme[118]. Various fascinating nanozyme, such as AuPt 294 
nanoflowers[119], Pt nanocatalyst[120], Pt-Ni(OH)2 nanosheets[121], Prussian blue NPs 295 

(PBNPs)[122], been used to construct LFI, and realized the their widely application in food 296 
safety. For example, Tian et al. developed PBNPs as a marker signal LFI platform for OTA 297 

in soybeans samples. The new signal of PBNPs can be amplified via the TMB cascaded 298 
signal. The colorimetric signal of PBNPs accumulated on the test line through specific im- 299 
mune interactions, triggering the formation of a visible blue line. Meanwhile, the colori- 300 

metric signal could be further amplified via the peroxidase mimic property of PBNPs. This 301 
proposed LFI significantly improved the sensitivity of OTA with 2-3 orders of magnitude 302 

relative to commercial AuNPs-based LFI[123]. 303 

3. Conclusions and Outlook 304 

Mycotoxin contamination is a continuous global concern for food safety. Visual im- 305 
munoassays remain simple, rapid, on-site detection of mycotoxins contamination as alter- 306 

native to traditional sophisticated techniques. The combination between conventional vis- 307 
ual immunoassays and nanomaterials, novel visual immunoassays tend to be popular for 308 
mycotoxins by using the signal amplified strategies for tackling their inherent limited sen- 309 

sitivity. The representative immunoassays based on various nanomaterials could achieve 310 
the enhanced sensitive detection of mycotoxins using the enzyme-nanomaterials catalytic 311 

strategies. Enzyme-immobilized onto nanomaterials, enzyme-mediated nanomaterials for 312 
amplified signal readout, nanomaterials-based artificial enzyme for amplifying the sensi- 313 

tivity of mycotoxins detection. 314 
Although the aforementioned sensitive strategies for visual mycotoxins immunoas- 315 

says have revealed the outstanding analytical performance and a fascinating prospect, 316 

while there are still many challenges needing to be tackled. (1) The visual signal is ob- 317 
tained by the naked eye, yet the reliance on manual observation rather than instrumental 318 

measurement might cause large subjective uncertainty, as well as difficulty in reporting 319 
quantitative data. The integration of digital technology [124] (e.g., machine vision) to sim- 320 
ulate human visual ability and objective perception, the accurate and reliable results could 321 

be easily quantified, and thus might reduce subjective errors in manual observations; (2) 322 
compared to the traditional immunoassays, the limited reproducibility and stability of 323 

nanomaterials-based immunoassays is the important obstacle for further application in 324 
food analysis due to their experimental and systemic factors. The standardization of na- 325 
nomaterials preparation could effectively guarantee the reproducibility and stability of 326 

nanomaterials-based immunoassays; (3) most of visual immunoassays are developed for 327 
single mycotoxin detection, while mycotoxins always co-occurred with the others in ac- 328 

tual food samples. The simultaneous monitoring multi-mycotoxins by combing the multi- 329 
recognition elements in immunoassays facilitate to shorten time, save cost and alleviate 330 
labor force; (4) integration the multi analysis technologies (e.g., magnetic, optical, and 331 

thermal properties, etc) by coupling to visual analysis technology, multi-signal immuno- 332 
assays of mycotoxins contribute to minimum background signal and false positive errors. 333 
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