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= Introduction

Why is it important to detect dicarboxylic acids?

» Excessive intake, production, or inadequate clearance of oxalic acid, the
simplest dicarboxylic acid, may cause health problems including nephropathy,
recurrent kidney stone, and liver disease.

» The dicarboxylic acids are abundant in natural plants, and also produced and
consumed in large amounts in the industrial productions of the polymers such
as polyamides and polyesters.
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» Hence, the chemosensor that allows convenient detection and visualization
of the dicarboxylic acids to output visible color change and/or spectral
changes is valuable in terms of the health and environmental managements.

.“'




|
||

Introduction

Zheng et al. found that the chiral calix[4]arenes bearing amino alcohol groups
were a class of excellent receptors for chiral recognition of carboxylic acids.
They reported that a nitrogen containing calix[4]arene 1, which was more easily
synthesized in excellent yield, has good ability to recognize the enantiomers of
mandelic acid and 2,3-dibenzoyltartaric acid.
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Figure 1. Molecular structure of compound 1, L/D-mandelic acid, and L/D-2,3-
dibenzoyl tartaric acid

— Zheng, Y. S.; Xiao, Q. Chin. J. Chem., 2005, 23, 1289-1291. ——
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Introduction

Ghosh et al. designed and synthesized a new type of anthracene-based
chiral fluorescent chemical sensor 2. It has significant enantioselectivity to L-
tartrate. When L-tartrate is present, the sensor exhibits a significant increase
In emission intensity in DMSO, while the isomer tartrate brings a relatively
small change.
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Figure 2. (a) the structure of compound 2; (b) Change in fluorescence ratio of 2
(c=1.12X104 M) at 432 nm upon addition of 20 equiv amounts of anions.

r— Ghosh, K.: Sarkar, T. Tetrahedron Lett., 2014, 55, 1342-1346.
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—— Synthesis of Phenylene-bridged Bipyrrole ==
Bearing N-Substituted Imino Groups(BPI)

BPI

BPI-1:R= | NN BPI-2:R= BPI-3:R= | S
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Figure 3. Synthesis of a series of BPI
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Chiroptical Sensing of Chiral Guests with =
Achiral BPI-1
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Figure 4. (a) UV-vis absorption and (b)
CD spectral titrations of BPI-1 (3.5X10"°
mol/L) with L-DBTA in CH,CI, at 298 K.
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Chiroptical Sensing of Chiral Guests with =

Achiral BPI-1
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Figure 5. (a) UV-vis absorption and (b)
CD spectra of BPI-1 (3.5X10° mol/L),
and mixtures of BPI-1 and L-DBTA or D-
DBTA in CH,CI, at 298 K.




—— Chiroptical Sensing of Chiral Guests with ==
Achiral BPI-1/ BPI-2
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Figure 6. CD spectral changes of (a) BPI-1 (3.5X10° mol/L) and (b) BPI-2
(2.8X10 mol/L) upon mixing with L-DBTA in CH,Cl, at 298 K.
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Figure 7. 'H NMR spectral titration (600 MHz) of BPI-1 (1.1 102 mol/L) with L-
DBTAin CD,Cl, at 293 K.
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== Chiroptical Sensing of Chiral Guests with i

Achiral BPI-1
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Figure 8. Schematic illustration for a possible complexation of BPI with L-DBTA
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—— Chiroptical Sensing of Achiral Guests with =
Chiral BPI-3

CD data UV-vis data
Ligand Acid Structure
Amax(nm) of the lowestest Relative CD 4
energy CD band intensity imax/nm AS(L'mOL cm )

Oxalic acid Ho,c~ 0 +(395) 14 363 1.66x10%
Malonic acid HOZC\/COZH +(401) 17 369 1.91x10*
Sebacic acid HOZCH/COZH +(399) 12 360 1.11x10*
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CO,H
Phthalic acid ©i +(397) 17 368 1.86x10%

COH

CO,H

Isophthalic acid +(388) 12 365 1.62x10*
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HO,C
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Terephthalic acid \©\ (388) 1 365 1.24x10
CO,H
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Chiroptical Sensing of Chiral Guests with =

Chiral BPI-3
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Figure 9. (a) UV-vis absorption and (b)
CD spectra of BPI-3 (3.5X 10 mol/L),
and mixtures of BPI-3 and L-DBTA or D-
DBTA in CH,CI, at 298 K.
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— Summary

» There is a 1:1 chemical binding ratio between BPI-1 and DBTA. When
DBTA is identified, the configuration flipping phenomenon will occur,
but BPI-2 does not have a flipping phenomenon, which may be caused by
pyridine.

» BPI-3 does not show the mirror symmetry phenomenon that occurs when
BPI-1 and BPI-2 interact with DBTA. BPI-3 can effectively distinguish
between L-DBTA and D-DBTA.

» BPI-3 can effectively distinguish long-chain dicarboxylic acids from
short-chain dicarboxylic acids, and oxalic acid exhibits specific
selectivity in UV-visible absorption spectra and circular dichroism.
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