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Abstract: In hydroponic cultivation, monitoring and quantification of nutrients is of paramount im-

portance. Precision agriculture has an urgent need for measuring fertilization and plant nutrient 

uptake. Reliable, robust and accurate sensors for measuring Nitrogen (N), Phosphorus (P) and Po-

tassium (K) are regarded as critical in this process. It is vital to understand nutrients’ interference; 

thusly, a Hoagland fertilizer solution-based orthogonal experimental design was deployed. Con-

centration ranges were varied in a target analyte independent style: [N]= [103.17-554.85] ppm; [P]= 

[15.06-515.35] ppm; [K]= [113.78-516.45] ppm, by dilution from individual stock solutions. Quanti-

tative results for N and K, and qualitative results for P were obtained. 
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1. Introduction 

Fertilizer usage represents an important part of traditional agriculture and crop yield. 

In a world of growing food (and other agricultural products) demand – estimates indicate 

up to 50% increase in the 2012-2050 time frame [1] – fertilizer (ab)use is seldomly a goto 

solution for crop yield increase. Additionally, although growth rates for arable land are 

expected to increase within a sustainable manner, if an arable land loss scenario due to 

climate changing conditions is taken into account [2], further conflicts and competition 

might arise between protected lands, agricultural exploitation and human expansion. 

Considering these concerns – well reflected by the United Nation’s 2030 Agenda for 

Sustainable Development [3] – and also motivated to provide a solution for sustainable 

agriculture, our group has undertaken the task to develop a technology that is able to help 

farmers ensure that their crops’ needs are being met, through their fertilization proce-

dures. Knowing what is being fed to the crops and what is being uptake, it is possible to 

reduce water/fertilizer consumption to an optimal level, reducing the operational costs, 

whilst allowing crops to develop at their optimal speed, towards a bigger crop turnover. 

Spectroscopy is, among others, one of the most well-established techniques for chem-

ical identification and quantification. Several chemical determination methodologies that 

rely on spectroscopy exist (e.g., ICP-AES, LIBS, FTIR, GC-VUV); nevertheless, limitations 
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also exist: the sample must be responsive to electromagnetic radiation (absorption/emis-

sion); linearity outside the Beer-Bouguer-Lambert Law [4–6] can sometimes be problem-

atic, or the simple fact that spectroscopy is a molecular-level information tool, which can 

add entropy to the analysis by providing a wider range of information than the one de-

sired. If pure compounds are analysed, little or no interference exists; when more complex 

mixtures are targeted, interferences might play a key role on the successful outcome. In 

such cases, in order to obtain an accurate and reliable measurement, interferences have to 

be taken into account. Chemometrics presents itself as a putative solution to, by employ-

ing varying complexity mathematical calculations, together with statistics and algorithms 

allow the extraction of relevant information from the superimposed and – sometimes – 

latent data. Linearity-based models are unable to solve the interference pattern between 

any constituents present: either interferents and non-interferents (target analytes), due to 

the fact that light has a wave-like nature and, hence the sample information might suffer 

from constructive or destructive interferences [7]. Nevertheless, new chemometrics meth-

odologies that encompass interferences already allow critical developments to be 

achieved, e.g., on health-related Point-of-Care analysis [8]. 

In hydroponics, most of these interferences can be attributed to the fertilizers. Ferti-

lizers are mixtures of several different nutrients, mostly in their inorganic salt form (e.g., 

MgSO4, CaCO3, FeCl3) whilst some might be in aqueous solutions (e.g., Mo, Ba, B). In com-

plex mixtures, some signals might superimpose over others, causing a concentration mise-

valuation, or resulting in a continuous spectrum of overlapping signals. 

This study aims to provide insight on the interferences within a complex matrix or-

thogonal design consisting of 83 independent concentration Hoagland solution samples. 

The performed assay further complements on our previous findings [9] on the feasibility 

of information extraction of highly constrained samples, by using an advanced algorithm 

– Self-Learning Artificial Intelligence (SLAI) – in order to find the adequate co-variance 

modes for accurate model prediction.  

2. Materials and Methods 

Hoagland solutions were chosen as a matrix due to their widely accepted status 

among the agronomical community as being a good model for complex nutrient solutions 

in hydroponics. Stock Hoagland solutions are composed as described by Table 1. 

Table 1. Half strength Hoagland solution individual component concentration. 

Element Ionic Form C (ppm) C (mM) 

Macronutrients 

Potassium (K) K+ 117.29 3.00 

Calcium (Ca) Ca2+ 80.16 2.00 

Magnesium (Mg) Mg2+ 24.31 1.00 

Nitrogen (N) Total N 105.06 7.50 

  N(NH4+) 7.01 0.50 

  N(NO3-) 98.05 7.00 

Phosphorus (P) Total P (HPO42-; H2PO4) * 15.49 0.50 

Sulfur (S) SO42- 32.08 1.00 

Micronutrients 

Chlorine (Cl) Cl- 0.324 9.15 

Boron (B) BO33- 0.250 23.12 

Manganese (Mn) Mn2+ 0.251 4.57 

Zinc (Zn) Zn2+ 0.025 0.38 

Copper (Cu) Cu2+ 0.0102 0.16 

Molybdenum (Mo) MoO4- 0.0053 0.06 

Iron (Fe) Fe2+; Fe3+ ** 2.500 44.77 

Sodium (Na) Na+ 1.029 44.77 

The ratio of ionic forms depends on *the pH and **also on the O2 level within the nutrient solution. 
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Three stock solutions for N, P and K were freshly and individually prepared in order 

to be possible to vary each target element (N, P or K) independently. Each stock solution 

comprised of ionic elements already present in the base matrix: N – NaNO3/NH3; P – 

H3PO4; K – KCl. The ratio of NaNO3/NH3 of the stock spiking solutions was the same as 

the ratio on the Hoagland solution (≈93:7). 

Final concentrations of all samples (matrix + individual spikes) were corrected taking 

into account any variations derived from the preparation of fresh stock solutions each day 

during the execution of the assay. 

The tested final concentration ranges, for the target analytes, were as described in 

Table 2. 

Table 2. Tested concentration ranges for N, P and K within the design matrix. 

 Concentration 

(ppm) 

Concentration 

(mM) 

 N P K N P K 

Minimum 103.17 15.06 113.78 7.37 0.49 2.91 

Maximum 554.85 515.35 516.45 39.61 16.64 13.21 

 

The designed orthogonal matrix was composed by 83 samples, each one with an in-

dependent N, P and K concentration level. At each corresponding level, the N, P and K 

corresponding spike was added to the matrix and stirred for 10 s in order to attain full 

homogeneity. Afterwards, the pH value was registered (Crison GLP 21, Crison Instru-

ments, SA – Barcelona, Spain) and the sample pumped into a custom-built flow cell for 

spectral data acquisition. Each sample had a final total volume of 30 mL (Hoagland + [N 

+ P + K] spikes). After data acquisition, the sample was discarded and the system flushed 

with deionised water. 

Data acquisition was performed with an in-house LabView-based developed soft-

ware (National InstrumentsTM Corp. – Texas, USA) for pumping control and data acquisi-

tion. 

Sample irradiation was performed with a D2 light source (FiberLight®  D2 HighPower 

DTM 10/50S, Heraeus Noblelight GmbH – Hanau, Germany) whereas the detection was 

performed by a miniaturized spectrometer with a 190-650 nm range (STS-UV-L-50-400 

Ocean Insight, Inc.). Individual components were assembled with custom-length 600 nm 

UV-Vis optical fibres, as depicted in Figure 1. 

 

Figure 1. Scheme for individual components arrangement, within the developed prototype. 

3. Results 
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The obtained results from the execution of this matrix were compiled and are de-

picted on Figure 2. 

The collection of spectral data and cross correlation with the concentration infor-

mation for each solution was performed. Spectroscopy signals were processed accord-

ingly to [7]. Nevertheless, using advanced signal processing it is possible to train the sys-

tem to recognize and extract the information from the relevant features, incorporating 

multi-scale interference into the NPK quantification models. 

 

 

 

(a) (b) 

Figure 2. Compiled spectra (83 samples) without (a) and with scatter correction (b). 

The correlation of the different levels among the NPK nutrients of the matrix design, 

can be represented as displayed by Figure 3 (a) whereas Figure 3 (b) shows the corre-

sponding recorded spectra in the UV-Vis region (circa 200 - 650 nm) of the factorial design 

samples. As expected, most of the systematic spectral variation occurs at ≈250 to 450 nm, 

and, to a lesser extent, to 500 nm. This figure provides evidence that information about P 

and K is present, because, even to the naked eye, one can observe that there are more 

spectral patterns in the region of ≈250 to 450 nm than the expected nitrogen levels of the 

experimental design; that is a good indication that the interferences between all the con-

stituents are being registered on the spectra.  

 

 

 

(a) (b) 

Figure 3. Sample distribution of the NPK full factorial design (a), whole matrix data (with scatter correction) of the relevant 

wavelengths of the obtained spectra, where most of the relevant NPK-bearing information is contained (b). 

The Principal Component Analysis (PCA) (please refer to Figure 4 (a)) scores plot of 

the corresponding experimental design spectra are shown, where the different colours 

represent the different levels of total nitrogen. The main variance present in the spectra 

corresponds to the nitrogen absorbance, where the first principal component is highly 

correlated to the nitrogen content. It is also possible to see that the K-level information is 

embedded inside each N-concentration level. Analysis of the second component allows to 

unveil that information of K-level also carries the information of the different P-levels of 

the sample matrix (please refer to Figure 4 (b)). 
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(a) (b) 

Figure 4. Principal components analysis (a) and the information of K-levels within the N-levels (b, left-hand side) whereas 

(b, right-hand side) demonstrates the information of P embedded within K-level groups. 

 

Using the data obtained from the executed matrix, it was possible to train the Self-

Learning AI of the system in order to quantify N and K with 6.7% (0.997) and 3.8% (0.987), 

respectively, and to obtain qualitative results for P, as shown in Figure 5. 

 

 

 

 

(a) (b) 

 
 

(c) (d) 

Figure 5. Matrix results for total N (a), total P (b), total K (c) and also pH (d). Quantitative results for N and K, whereas 

qualitative results for P are possible to be inferred. 

4. Conclusions 

A NPK spectroscopy-based, AI-supported by a robust Self-Learning Artificial Intel-

ligence was developed in order to be able to cope with increasing interference complexity 

of fertilizer solutions in greenhouses. The obtained results allow to be inferred that the 

current system’s performance is adequate for Hoagland solutions, which are used in re-

search and high-end hydroponic systems. 
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The assembled system aimed to keep a good balance between cost-benefit, without 

relinquishing reliability, robustness and accuracy; this objective has been successfully at-

tained. 

Further analysis of the results – not within the scope of this manuscript – as well as 

of unpublished data, allows further developments to be implemented to the system/pro-

totype, in order to enhance its robustness and accuracy.  
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