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Abstract: The growing human population and the discovery of new diseases and emerging pan-

demics have increased the need for healthcare treatments and medications with innovative design. 

The emergence of nanotechnology provides a platform for novel diagnostic and therapeutic in vi-

vo non-invasive detection and treatment of ailments.  It is now the era of IOT (internet of things) 

and data acquisition and interpretation from various parts of the human body in real time is pos-

sible with interconnected sensors and information transfer devices. Miniaturization, low power 

consumption and price with compatibility to existing network circuits are essential requirements 

in IOT. Biosensors made from nanostructured materials are the ideal choice due to the unique 

structural, chemical, and electronic properties of these materials with the advantage of large sur-

face to volume ratio which makes them very successful for use as sensors for detection of diseases, 

drug carriers, filters, fillers and reaction catalysts in healthcare applications. In this mini review, 

we will review the recent progress made in research and applications of biosensors in health and 

preventive medicine. The focus of the article will be on biosensors made from layered nanomateri-

als like graphene and its structural analogs molybdenum disulphide (MoS2) and boron nitride 

(BN). We will discuss and highlight the present capabilities of the different nano forms of these 

materials in the detection and analysis of diseases. Their efficiency in terms of detection limits, 

sensitivity and adaptability to different environments will also be discussed. In addition, the chal-

lenges and future perspectives of using nano-biosensors to develop efficient diagnostic, therapeu-

tic and cost effective monitoring devices with smart technologies will be explored. 

Keywords: electronic tongues and noses; 2D materials; nanopores; preventive medicine; non-

invasive 

 

1. Introduction 

The detection of biological molecules, ions or species of interest (analyte) through 
the measurement and analysis of signals proportional to the concentration of the analyte 
is the basic function of a biosensor. The biological/chemical information needs to be 

transformed into readable outputs through the transducer. The biosensors used in the 
detection and prevention of diseases need to be non-invasive, highly selective, flexible 

and sensitive [1-3]. In addition in order to acquire and interpret signals from different 
parts of the body with interconnected or multifunctional sensors, the sensor design 

needs to be innovative and compatible with smart technologies that can transfer data 
with high speed and accuracy [4, 5]. Moreover, several constraints such as biocompati-
bility, reliability, stability, comfort, convenience, miniaturization, costs need to be con-

sidered [6]. The last decade has seen tremendous research on 2D materials like gra-
phene, graphene oxide, MoS2 etc in different nano forms for sensing applications in the 
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health care, environment and other sectors [7-14]. 

Graphene (Gr) the first 2D material discovered with its one atomic layer honey-
comb structure has remarkable electronic, mechanical and optical properties and has 
seen a multitude of applications [15-17]. Gr analogs MoS2 and BN also have the honey-

comb lattice and layered structure that allows for easy fabrication of 2D and other 
nanostructures due to the weak inter layer Van der Waal interactions.  

A lot of research has been going on in the area of Gr and beyond Gr nanomaterials 
(NM) during the past decade and it is necessary to put into perspective and highlight the 
progress of Gr, MoS2 and BN nanostructures in biosensing for the healthcare sector. This 

is a rapidly changing and highly researched field with new discoveries and innovation 
and requires frequent update of the progress and challenges. This motivates us to pre-

sent a focussed review with literature survey of the recent developments (last five years) 
on Gr and its structural analogs MoS2 and BN in the detection and analysis of diseases in 
terms of efficiency, detection limits, sensitivity and adaptability to different environ-

ments. We will discuss and highlight the present capabilities of the different nano forms 
of these materials. In addition the challenges and future perspectives of using nano-

biosensors to develop efficient diagnostic, therapeutic and cost effective monitoring de-
vices with smart technologies for healthcare and preventive medicine will be explored. 
The article is arranged under the main headings: Introduction, Nano-Biosensors, Smart 

technologies and Challenges OR opportunities. 

2. Nano-Biosensors  

2.1. Biosensor types 

Biosensors are two component devices consisting of a receptor and a transducer. 
The receptor is a biological recognition element which could be an enzyme, micro-

organism, tissue, antibody or nucleic acid. The transducer converts the physiochemical 
change due to the interaction of the analyte with the receptor into an analytical output 

signal, which is coupled to an appropriate data processing system. A schematic diagram 
of the process is shown in Figure 1.  

. 

Figure 1. Schematics of a biosensor unit. 

Electrical, optical, electrochemical, micromechanical, calorimetric, magnetic, ther-
moelectric, and piezoelectric transducers can be employed in biosensors and the choice 
depends on the sensing environment and needs. Materials have been researched widely 

by the materials science community for use to fabricate the best suited biosensor.  

2.2. Nanostructured materials for biosensing 

Gr and Gr like MoS2 and BN NMs are the best materials so far for biosensing. The 

unique layered and honeycomb structure of these materials allows for easy synthesis of 
monolayers (ML), bilayers (BL), nano-flakes, nanotubes and hetrostructures with a wide 
range of bandgaps and a diverse variety of optoelectronic properties. In addition, due to 

the weak inter layer Van der Waals forces one can intercalate with atoms of different 
species and functionalize them easily to obtain the desired properties at will; moreover 

the NMs have the advantage of large surface to volume ratio which is important in effi-



cient immobilization of receptors on the surface of the NM for good sensor performance 

[18]. All these factors make them prime candidates for use as biosensors in healthcare 
applications. In Figure 2 we give a graphical representation of the NMs for biosensing 
that best describes the scope of this review.  

 

Figure 2. Graphical representation of nanostructured materials for biosensing. 

2.2.1. Gr nano-biosensors 

A Graphene layer has hexagonal symmetry with a honeycomb structure and the in 

plane C atoms are bonded by strong covalent sp2 bonds with the nearest neighbours and 
an out of plane delocalised π bond as shown in Figure 3(a). It is the delocalised π elec-

trons that are responsible for the extremely high room temperature mobility of 15,000–
200,000 cm /Vs, [19]. Moreover Gr has excellent mechanical strength on account of the 
strong covalent bonding and is optically transparent and highly flexible [20, 21].  

 

Figure 3. (a) (i) Graphene geometry (ii) bonding, and (iii) related band diagram [19] (b) (i) Sche-
matic diagram showing the Dirac Fermi cone (ii) the modification of the band by chemical or ge-
ometry restrictive doping (iii) the modification of the band by bilayer graphene; (iv) and finally, 

the modification of the bands in doped bilayer graphene [22]. 

The high electrical and thermal conductivity, mechanical strength, flexibility, opti-
cal transparency and ultrathin (one atom thickness) of Gr are ideal characteristics for 
sensing applications. Sensor selectivity plays a very important role in its design and this 

is very closely related to the NM senor characteristics, so selectivity can only be im-
proved by fine tuning the NM properties. The NM interacts with target bio-molecules by 

either a Physisorption or Chemisorption process. Physisorption, although fast, is a non 
covalent bonding reaction and is not preferred as the bio-molecules do not bind com-
pletely thereby affecting the sensitivity. Chemisorption can be brought about by the 

presence of defects, vacancies, doping and chemical functionalization, all of which in-
crease the reactivity and enhance the selectivity to the target species. Figure 3(b) depicts 

band structure changes of Gr by changing the geometry, thickness and doping mecha-
nisms. Graphene oxide (GrO) 2D material produced by the oxidation of Gr is semicon-



ducting and has a finite gap as compared to Gr. It has the advantage of being stable in 

water and other solvents and can be easily functionalized. Reduced graphene oxide 
(rGrO) is obtained by the removal of the oxygen functional groups and has the ad-
vantages of Gr and GrO; being conducting and having chemically active defect sites. 

Bandgap engineering and chemical functionalizing of Gr through use of graphene de-
rivatives like graphene oxide (GrO) and reduced graphene oxide (rGrO) and composites 

have proved to work well as sensors (including wearable sensors, and implantable de-
vices) for human health monitoring as reported in Table 1. Body temperature is an im-
portant indicator of abnormal body functions and its measurement is one of the first 

lines of action in suspicious cases. We see ample evidence of this during the current 
Covid19 pandemic. It is also linked to our biological clock and can be used to monitor an 

individual’s sleep patterns, which is important in determining the overall health and 
mental fitness. Table 1 gives a summary of the various Gr based sensors along with body 
functions tested, the mechanism of sensing, sensitivity & range when available and the 

reference to the corresponding work. 

Table 1. Summary of details of graphene based sensors in health monitoring. 

NM Body function 
Sensing mecha-

nism 

Sensitivi-

ty 
Range Ref. 

Freestanding single 

rGrO; 

3D Gr-PDS composite 

Body temperature Resistance based 

- 

 

 

- 

- 

 

 

- 

[23] 

 

[24] 

Gr/PDMS; 

Graphene 
Body movements 

Piezo-capacitive 

strain; 

textile strain 

0.24 kPa-1 

0.0078 

kPa-1  

0–10 kPa 

10–100 

kPa 

[25] 

 

[26] 

Inkjet printed Gr Heart rate Electronic - - [27] 

 Wrist pulse Strain;pressure - - 
[28] 

[29] 

Gr-rubber composite; 

rGrO 

Body movements 

+Respiration rate 
Strain 

- 

 

- 

- 

 

- 

[30] 

[31] 

Gr porous network Blood pressure Pressure+strain - - [32] 

3D Nano implant; 

Nano hybrid fiber 

Blood glucose 
Sweat glucose 

Electrode 
Electrocatalytic 

- 
- 

- 
- 

[33] 
[34] 

3D Gr Scaffold ECG implant - - [35] 

Gr; 

Porous Gr 
EMG Electronic skin 

- 

- 

- 

- 

[36] 

[37] 

3D Gr Scaffold; 

Gr 
EEG 

Implant 

Electronic skin 

- 

- 

- 

- 

[35] 

[36] 

2.2.2. MoS2 and BN nano-biosensors 

Similar to Gr in honeycomb structure 2D MoS2 and hBN have all the advantages of 

Gr for sensing mentioned in the previous section. These Van der waal structures exhibit 
unique optical and electronic properties that make them very appealing for biosensing 

[38]. Moreover, they have the added advantage of bandgaps unlike Gr which has a zero 
gap; this improves the sensitivity of sensor devices made from these materials especially 
in sensors.  

MoS2 is a prototype of a class of materials termed transition metal dichalcogenides 
(TMDs) and has markedly anisotropic properties, as seen from its electrical resistivity 

among other properties. The resistivity in a direction perpendicular to the planes is 
about 1000 times greater than in the parallel direction. Unlike Gr which is one atom 
thick, a ML of MoS2 has three atomic layers Sulfur–Molybdenum–Sulfur. The physical 

properties of MoS2 change markedly at the nanoscale. The bulk material has an indirect 
band gap of ∼1.2 eV, while the ML has a direct and broader band gap of ∼1.8 eV [39]. 

Hence, it shows thickness dependent band‐gap properties, allowing for the production 
of tuneable optoelectronic devices with diversified spectral operation.  



The electronic and optical properties of Gr and MoS2 is complemented by hBN 

which is an insulator with a large indirect bandgap value of`~5.95 eV [40] in bulk form 
and in the ML limit crosses over to a direct bandgap material with a gap of 6.1eV[41]. 
The sensing mechanisms of these materials could be electrical-based sensing, through 

charge transfer which alters the resistance or optical sensing where due to the charge 
transfer, the surface Plasmon resonance (SPR) gets modified and can be detected; or the 

biomolecules are detected by their spectral fingerprints.  
Hybrid structures of Gr, Mos2 and BN have also been highly researched to increase 

the scope of biosensing capabilities of these NM. This is the topic of the next section. 

2.2.3. Hetrostructures 

2D Gr, GrO, rGrO, MoS2, hBN can all be used like Lego blocks to build interesting 
hetrostructures by mixing and matching for increased selectivity and sensitivity of the 

nano-biosensensors. This process of electrostatic doping by stacking of these Van der 
Waal structures can be used to obtain unique and tuneable electronic properties. Figure 
4 shows a graphical representation of a hetrostructures that can be made with the basic 

single layers of Gr, hBN and MoS2.  

 

Figure 4. Graphical representation of possible hetrostructures that can be made by stacking multi-
ple van der Waal layered structures in different orderings. Adapted from [42]. 

Hetrostructures although highly desirable, require careful considerations of lattice 

mismatch, misalignment of layers and introduction of unforeseen defects during the 
deposition and the epitaxial growth. Hexagonal BN is an insulating analogue of graphite 
with a small lattice mismatch (~1.8%), and so it is an ideal substrate for graphene and a 

key building block in many van der Waals hetrostructures. Graphene-hBN integrated 
devices have been recently used for DNA sequencing by current modulation [43] and 

distinguishing nucleotides in DNA [44]. SPR based biosensor consisting of gra-
phene/hBN hybrid structure for the detection of biomolecules was reported in 2019 [45]. 
SPR technique was also used in a biosensor consisting of MoS2/graphene hybrid struc-

ture with Au as a substrate was used to detect biomolecules using SPR [46]. Again in 
2017, angle based SPR biosensor made of MoS2 /Al film/MoS2/graphene heterostructure 

was used to detect biomolecules [47]. In Table 2 we have summarized the various Nano 
biosensors made from MoS2, hBN, Gr, Gr derivatives and hetrostructures of these NMs 
in the recent years. The table gives the nanomaterials used, the species detected, the 

sensing mechanism, sensitivity, detection range, the year of publication and reference to 
the publication.  

  



Table 2. Summary of Nanobiosensors with references and year of research. 

NM Analyte Sensing Mechanism 
Detection 

limit 
 Range 

Ref.+y

ear 

MoS2 DNA 
Fluorescence 

quenching 
500 pM 0-50 nM 

[48]; 

2014 

MoS2/Gr Acetaminophen Electrochemical 20 nM 
0.1–100 

μM 

[49]; 

2013 

Gr/MoS2 DNA hybridization 
Photoluminescence 

 
1 attomolar  

[50]; 

2014 

MoS2/Gr on Au Biomolecule SPR  
10−6 

RIU 

[46]; 

2015 

MoS2/Gr-Al hybrid Biomolecule Angle based SPR 
190.83∘/RI

U 
 

[47]; 

2017 

Gr PMMA, PVP 
IR transmission 

spectroscopy 
- - 

[51]; 

2014 

Gr ssDNA Phase based SPR 1 attomolar - 
[52]; 

2015 

Gr Glucose FET 0.5 μM - 
[53]; 
2015 

Gr 
Carcinoembryonic anti-

gen (CEA) 
FET 100 pg/ml  

[54]; 

2016 

Gr Protein 
Acoustic Gr plas-

mons 
- - 

[55]; 

2017 

Multi-channel Gr DNA FET 10 pM - 
[56]; 

2017 

rGrO + Trityl Organ-

ic Radical 
Xanthine Electrode based 0.52 nM - 

[57]; 

2017 

GrO hCG Angle based SPR 0.06 mM - 
[58]; 

2017 

hBN Dopamine Neurotransmittor 10 μM - 
[59]; 

2016 

hBN CBP 
IR vibrational spec-

troscopy 
- - 

[60]; 

2018 

Gr/hBN DNA sequencing Current Modulation - - 
[44]; 

2017 

Gr/hBN DNA sequencing Current Modulation - - 
[43]; 

2019 

Gr/hBN Biomolecule SPR 
4.207 

µm/RIU 
 

[45]; 

2019 

3. Smart technologies  

Early stage detection and prevention of chronic and fatal diseases requires continu-
ous monitoring. Data acquisition and interpretation from various parts of the human 
body in real time is possible with interconnected sensors and information transfer devic-

es in today’s era of internet of things (IOT). The unprecedented advancements in elec-
tronics and sensor technologies coupled with Big Data and AI offer exciting opportuni-

ties in the field of smart and sustainable healthcare. The stage is now set to shift from the 
old medical procedures and protocols and adapt smart integrated medical testing with 
nano-devices for diagnosis and therapeutics [61, 62]. We need to do away with costly 

and bulky equipment and old fashioned laboratories and embrace wearable and minia-
turised sensors that use interstitial fluid (ISF) instead of blood to detect the minute 

changes in biomarkers with sweat, tears and breath analysis that contain a wealth of in-
formation about the body malfunctions [1-3]. Wireless, powerless nano-devices made 
from biocompatible materials that can be worn on the skin (patches, tattoos, watches 

etc), in textiles, in the eye, mouth, teeth (miniaturised implants) and other innovative 
means using non-invasive probes are the need of the day. Electronic Nose, Tongues and 

Skin are the new innovative smart technologies that are the future of health care moni-
toring and preventive medicine [63-67]. 



4. Challenges OR opportunities 

A challenge, limitation or drawback is an opportunity for improvement, change in 

strategy or chance for innovation. Although, nano-biosensors research show that consid-
erable improvements to health care monitoring can be made, commercial products are 
few and from small companies [68]. Before large-scale and widespread manufacturing of 

2D and other nanostructured devices for health-related applications can be realized, uni-
formity and controlled synthesis is necessary to rule out device to device variability. 

This is crucial for large scale commercialization and the challenge has been met as indi-
cated by the recent research and publications addressing this issue [69, 70]. 

In addition, in vivo and point of care diagnostics require biocompatibility and tox-

icity issues to be addressed. Precise control of the NM properties and biocompatibility 
are required especially in the local biological environment where the devices are to be 

used with a thorough understanding of the complex physiochemical interactions. The 
recent years has seen tremendous work in this direction with good progress [71-73].  
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