### PLANTS OF THE FAMILY ASTERACEAE: EVALUATION OF BIOLOGICAL PROPERTIES AND IDENTIFICATION OF PHENOLIC COMPOUNDS

<u>M. Barral-Martinez</u><sup>1</sup>, P. Garcia-Oliveira<sup>1,2</sup>, B. Nuñez-Estevez<sup>1,2</sup>, A. Silva<sup>3,1</sup>, T. C. Finimundy<sup>2</sup>, R. Calhelha<sup>2</sup>, M. Nenadic<sup>4</sup>, M. Sokovic<sup>4</sup>, F. Barroso<sup>3</sup>, J. Simal-Gandara<sup>1</sup>, I.C.F.R. Ferreira<sup>2</sup>, L. Barros<sup>2\*</sup> and M.A. Prieto<sup>1,2\*</sup>

1 Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain.

2 Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.

3 REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4200-072 Porto, Portugal

4 Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade.

UniversidadeVigo





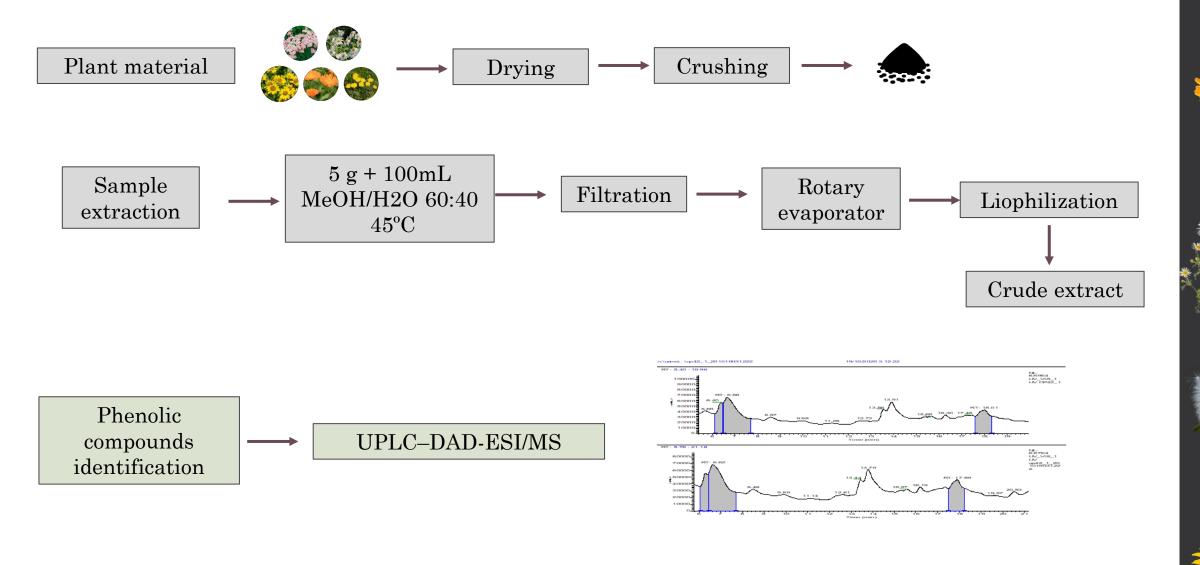


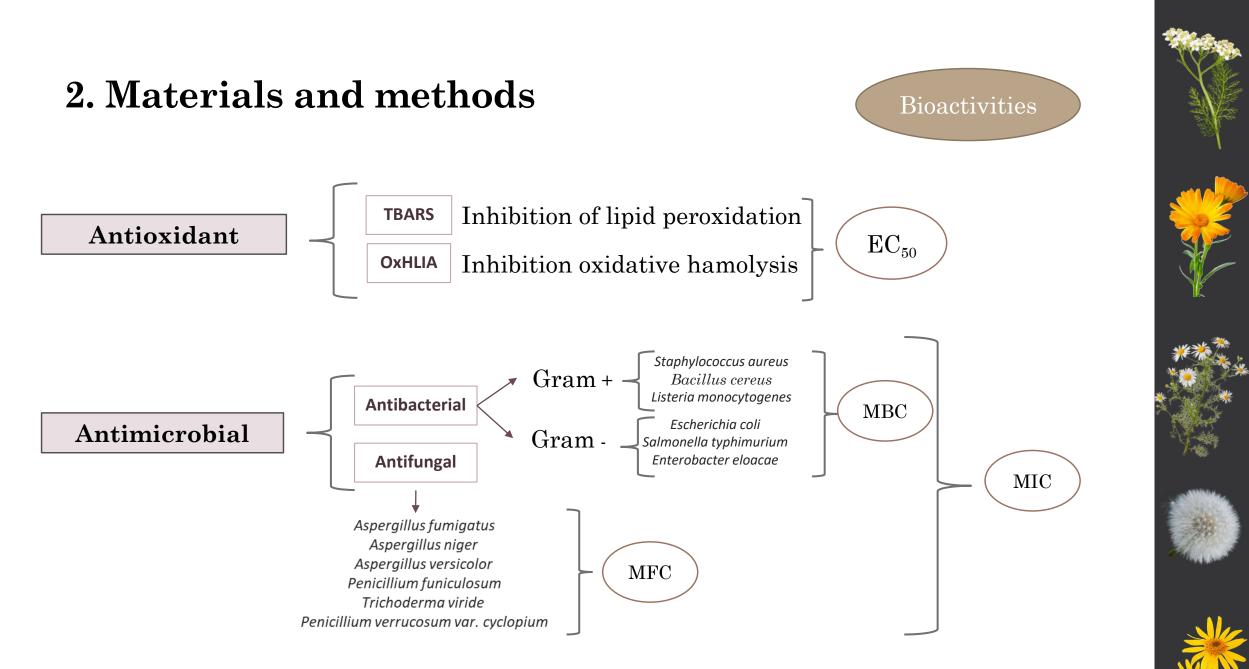


# Index

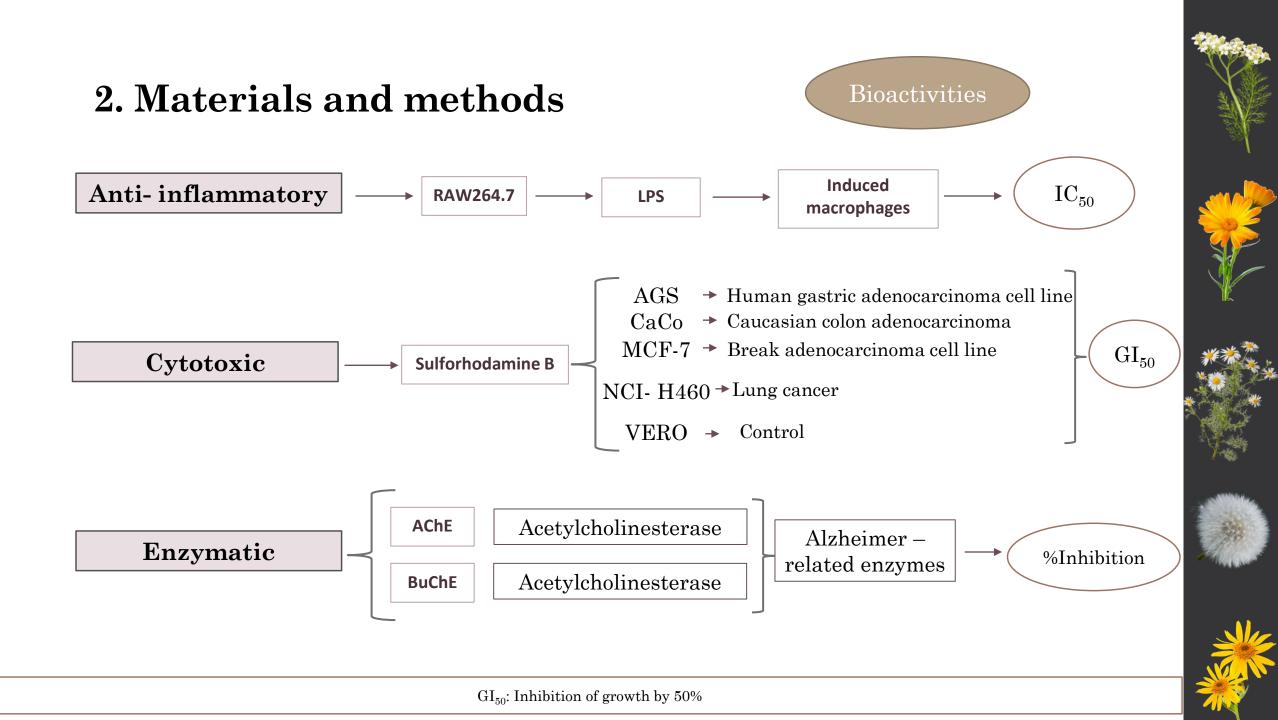
Introduction
Materials and methods
Results
Conclusion

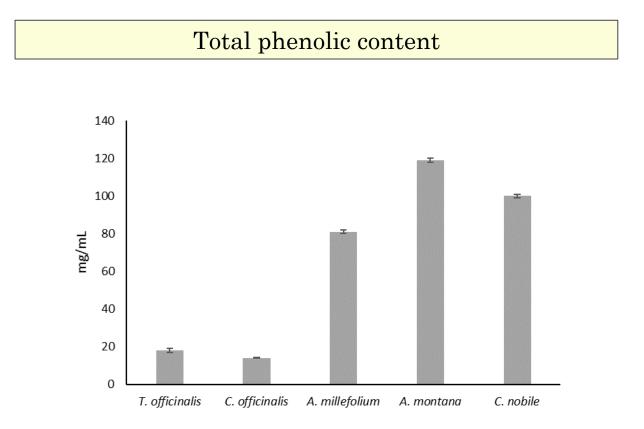
### 1. Introduction


□ Medicinal plants have had a great relevance due to their beneficial healthy properties




- □ These biological properties→ antioxidant, antitumor, antimicrobial activities are related to different bioactive compounds, including phenolic compounds
- □ Various natural phenolic compounds are related to numerous bioactive properties, which have aroused the interest of the scientific community


| The study focused on the analysis of five medicinal plants belonging to the Asteraceae family |                         |                                 |     |  |  |  |  |
|-----------------------------------------------------------------------------------------------|-------------------------|---------------------------------|-----|--|--|--|--|
| Achillea millefolium L.                                                                       |                         | Taraxacum officinalis F.H Wigg. |     |  |  |  |  |
| Arnica montana L.                                                                             | Calendula officinalis I | L. Chamaemelum nobile (L) All.  | N N |  |  |  |  |


### 2. Materials and methods





EC<sub>50</sub>: effective concentration 50, MBC: minimum bactericidal concentration, MFC: minimum fungicidal concentration and MIC: minimum inhibitory concentration

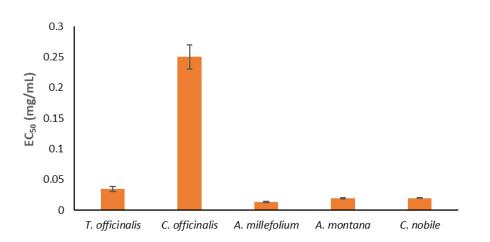




A. montana plant extracts showed the highest content of phenolic compounds (119 mg/mL), obtained by UPLC-DAD.



#### 3. Results Most representative phenolic compounds A.montana A. millefolium HO \_ O OH OH НÒ HO ÓН OF 5-O-Caffeolyquinic acid 3-O-Caffeoylquinic acid C. officinalis C. nobile T. officinale OH O HO O OH HO \_\_O OH OH HO OH ΗÓ ÓН ΗÒ ÓН OH ÓН ΗÖ ÓН $\cap$ 3-O-Caffeoylquinic acid Luteolin-O-pentosylhexoside


3-O-Caffeoylquinic acid

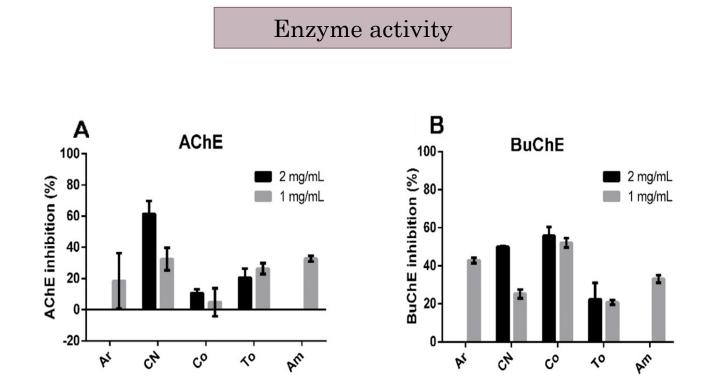
OH

OH

#### Antioxidant activity

A. *millefolium* extracts presented an outstanding activity (0.013 mg/mL)




|                                          |                | An                                    | timicr  | obial                       | and a | ntifur  | ngal a    | ctivi | tv        |     |      |     |      |     |
|------------------------------------------|----------------|---------------------------------------|---------|-----------------------------|-------|---------|-----------|-------|-----------|-----|------|-----|------|-----|
|                                          |                | Antimicrobial and antifungal activity |         |                             |       |         |           |       | Controls  |     |      |     |      |     |
|                                          | T. officinalis |                                       | C. offi | C. officinalis A. millefoli |       | efolium | A.montana |       | C. nobile |     | E211 |     | E224 |     |
| Antimicrobial activity                   | MIC            | MBC                                   | MIC     | MBC                         | MIC   | MBC     | MIC       | MBC   | MIC       | MBC | MIC  | MBC | MIC  | MBC |
| Gram-negative bacteria                   | _              |                                       |         |                             |       |         |           |       |           |     |      |     |      |     |
| Escherichia coli                         | 0.5            | 1                                     | 0.25    | 0.5                         | 0.5   | 1       | 0.5       | 1     | 0.5       | 1   | 1    | 2   | 0.5  | 1   |
| Salmonella typhimurium                   | 1              | 2                                     | 0.5     | 1                           | 1     | 2       | 0.5       | 1     | 0.5       | 1   | 1    | 2   | 1    | 1   |
| Enterobacter cloacae                     | 0.5            | 1                                     | 0.5     | 1                           | 1     | 2       | 0.5       | 1     | 0.5       | 1   | 2    | 4   | 0.5  | 0.5 |
| Gram-positive bacteria                   |                |                                       |         |                             |       |         |           |       |           |     |      |     |      |     |
| Staphylococcus aureus                    | 1              | 2                                     | 0.25    | 0.5                         | 0.5   | 1       | 0.5       | 1     | 0.5       | 1   | 4    | 4   | 1    | 1   |
| Bacillus cereus                          | 0.25           | 0.5                                   | 0.25    | 0.5                         | 0.25  | 0.5     | 0.25      | 0.5   | 0.25      | 0.5 | 0.5  | 0.5 | 2    | 4   |
| Listeria monocytogenes                   | 0.5            | 1                                     | 0.25    | 0.5                         | 0.5   | 1       | 0.5       | 1     | 1         | 0.5 | 1    | 2   | 1    | 0.5 |
| Yeasts                                   | MIC            | MFC                                   | MIC     | MFC                         | MIC   | MFC     | MIC       | MFC   | MIC       | MFC | MIC  | MFC | MIC  | MFC |
| Aspergillus fumigatus                    | 2              | 4                                     | 0.5     | 1                           | 2     | 4       | 0.5       | 1     | 0.5       | 1   | 1    | 2   | 1    | 1   |
| Aspergillus niger                        | 2              | 4                                     | 0.5     | 1                           | 2     | 4       | 1         | 2     | 0.5       | 1   | 1    | 2   | 1    | 1   |
| Aspergillus versicolor                   | 2              | 4                                     | 0.5     | 1                           | 2     | 4       | 0.5       | 1     | 0.5       | 1   | 1    | 2   | 0.5  | 0.5 |
| Penicillium funiculosum                  | 2              | 4                                     | 0.5     | 1                           | 2     | 4       | 0.5       | 1     | 0.5       | 1   | 1    | 2   | 0.5  | 0.5 |
| Trichoderma viride                       | 0.25           | 0.5                                   | 0.25    | 0.5                         | 1     | 2       | 0.5       | 1     | 0.25      | 0.5 | 1    | 2   | 0.5  | 0.5 |
| Penicillium verrucosum var.<br>cyclopium | 2              | 4                                     | 0.5     | 1                           | 2     | 4       | 0.5       | 1     | 0.5       | 1   | 2    | 4   | 1    | 1   |





#### Cytotoxic activity Anti-inflammatory activity 140 400 120 350 100 300 **GI<sub>50</sub> (µg/mL)** 250 200 **1**50 40 100 20 50 0 0 A. millefolium T. officinalis C. officinalis A.montana C. nobile T. officinalis C. officinalis A. millefolium C. nobile A.montana ■ AGS ■ CaCo ■ MCF-7 ■ NCI-H460 ■ VERO

C. nobile extracts showed the greatest effect compared to the rest, with a growth inhibitory 50 concentrations (GI<sub>50</sub>) values of 15.2±0.1 µg/mL for the anti-inflammatory activity, and GI<sub>50</sub> values between 54 and 10.3 µg/mL, in the case of cytotoxic activity.



*C. nobile* and *C. officinalis* extracts showed the greatest inhibitory effects on two enzymes related to Alzheimer's disease, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE)



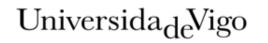
# 4. Conclusion

**□** Each of the plants showed some activity:

- *A. millefolium* showed high antioxidant activity.
- C. officinalis had the highest rate of antimicrobial and antifungal activities.

- In the case of anti-inflammatory and cytotoxic activities, the extracts of *C. nobile* showed the highest anti-inflammatory and cytotoxic activity.

- Extracts of *A. montana* showed the highest content of phenolic compounds
- In enzyme assays, both *C. nobile* and *C. officinalis* extracts showed the highest inhibitory effects.


□ This study provides scientific evidence to the assessment of the potential of medicinal plant extracts for the development of new products.

### **ACKNOWLEDGEMENTS**









### Thank you for your attention

