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Abstract: Mosquito species are considered important vectors of many diseases in humans, compan-

ion animals, and livestock. There is a great need to understand their dynamics and to develop meth-

ods for predicting their abundances. However, the population dynamics of mosquitoes are often 

complex displaying non-linear dynamics and thus, making it difficult to be modeled using linear 

statistical approaches. In this project, we explored the seasonal population patterns of mosquito 

populations in a Mediterranean environment in Northern Greece using straightforward machine 

learning techniques such as Artificial Neural Networks (ANNs). To train, validate and test the net-

work model we have used 2 years weekly counts of adult mosquito data including Culex sp., a major 

vector of the West Nile virus and related encephalitis diseases. The model training was performed 

in an open-loop (i.e., parallel series network architecture), including the validation and testing step 

and later on, after training, it was transformed to a closed-loop for the needs of a multistep-ahead 

mosquito abundance prediction. Determined by the autocorrelation function, one of the final mod-

els is using as inputs one week lagged values of mosquito abundances and was able to capture the 

adult seasonal mosquito patterns in most cases at acceptable levels. We conclude that ANNs suggest 

an important candidate for modeling and predicting the seasonal abundance of mosquito data since 

it is suitable for modeling noisy and incomplete ecological data, with no specific assumptions to be 

made about the underlying relationships and which are solely determined through data mining. 

However, we are also looking forward to improving the particular model performance using new 

data sets since it is of fundamental importance to choose an appropriate training set size and to 

provide representative coverage of all possible conditions to capture accurately the patterns of eco-

logical time series. Nevertheless, despite the limitations of the current study, this work contributes 

to knowledge of the seasonal functioning of arthropod vector dynamics and contributes towards 

the development of decision tools to be used in the preventive management of the transmission 

cycle of vector-borne diseases. 
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1. Introduction 

Vector-Borne Diseases (VBD) are human illnesses caused by parasites, viruses and 

bacteria that are mostly transmitted by arthropod vectors. The impact to public health due 

to vector - borne diseases is significant. The major vector-borne diseases account for about 

Citation: Damos, P.; Tuells, J.; Cabal-

lero, P. Predictive Modeling of Sea-

sonal Mosquito Population Patterns 

with Neural Networks, in Proceed-

ings of the 1st International Elec-

tronic Conference on Entomology, 

1–15 July 2021, MDPI: Basel, Swit-

zerland, doi:10.3390/IECE-10500 

Published: 1 July 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: ©  2021 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(http://creativecommons.org/licenses

/by/4.0/). 

https://iece.sciforum.net/


Proceedings 2021 2 of 9 
 

 

17% of all infectious diseases, while most of them are transmitted through mosquito spe-

cies. Malaria to date causes globally more than 400.000 deaths every year, most of them 

are children under the age of 5 [1, 2, 3, 4]. 

Until recently the highest incidence of mosquito transmitted diseases was observed 

in the tropical and subtropical regions. However, during the past years several neglected 

vector-borne diseases that were occasionally sporadic and have been eradicated get to a 

dynamic reappearance and cause outbreaks in temperate climates. Malaria, for instance, 

had been degraded while dengue fever was endemic in emerging countries such as sub-

Saharan Africa. Nevertheless, several mosquito-borne diseases have emerged in Europe 

in recent years; these include vivax malaria, West Nile fever, dengue fever, Chikungunya 

fever and Zika virus etc. [4, 5, 6]. 

Since there are no vaccines against diseases transmitted by arthropods the principal 

and most efficient way to prevent them is through knowledge of their population dynam-

ics in order to apply timely vector control measures. Lack of understanding of the im-

portance of proper treatment of arthropods of health importance leads to the ineffective-

ness of the measures taken, often leading to risks to public health and waste of public 

money. Therefore, it is important to develop new tools and methods to be used in decision 

making and to improve the control of arthropod vectors [7]. 

Mathematical models provide mean to simulate and predicted the behavior of eco-

logical processes such as arthropod vector dynamics to be used later on for decision mak-

ing [8, 9, 10]. To date most models used to simulate vector population dynamics are of 

deterministic nature, and need a priori knowledge of arthropod demographic parameters 

from Laboratory studies [11, 12]. However, arthropod specific life cycle information is not 

always available for particular regions nor from Laboratory trials. Moreover, under field 

conditions real life mosquito population dynamics is actually non-linear, abrupt and 

noisy. 

Artificial Neural Network models, or simply network models, are an alternative can-

didate of available deterministic to be used in modeling ecological time series and arthro-

pod vector population dynamics particularly [13.,14]. ANNs models are using empirical 

and semi-parametric methods which are inspired by human brain to simulate complex 

functions [15,16]. 

 One major asset of an ANN model is that is able to perform in an enviable way 

parallel processing of data and information, which traditional models simply cannot. Ad-

ditionally, because there is a dynamic and feedback relation between the data used to train 

the model and its prediction outputs, the model performance can be continuously im-

proved if more data are available to be used for training [16,17]. This is called machine 

learning [18]. 

The aim of the current work is to introduce and popularize ANNs in the fields of 

arthropod vector dynamics and medical entomology to be used to study their dynamics 

and outline the potentially to be used as decision tools to prevent vector borne diseases. 

We consider ANN models relevant to simulate the phenology of arthropod vectors and 

mosquitoes particularly, to understand their dynamics and seasonal population patterns. 

Moreover, the current mathematical and numerical simulations do not involve laboratory 

trials, and are based solely on available field abundance data and thus imply economy of 

time and resources.  

2. Materials and Methods 

2.1. General structure and functioning of ANNs 

ANNs were proposed as a mathematical tool to simulate the complex functioning of 

the human brain. The brain has the ability to parallel processing of data and continuous 

learning through the interaction with environment. The ANNs has similarities with bio-

logical neurons and consist of a set of artificial neurons that interact through synapses 

[18,19]. The degree of interaction between the synapses is determined by weights (synaptic 

weights). The neural network interacts with its environment (i.e., variables of interest), and 
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the synaptic weights change constantly and thus strengthening or weakening the power 

of each interaction node. Thus, the information from the external variables (i.e., environ-

ment) is encoded in the synaptic weights of the network and gives the ability to the ANN 

to simulate the process related to those variables. In order for the network, it used a train-

ing algorithm which aims to optimize through iterations the model performance. 

The main advantage of neural networks is first that it stores knowledge and experi-

ence from the environment used for its training (here mosquito abundance and tempera-

ture), which it can then recall to simulate the process. Second, it has the ability to general-

ize, that is, to extract the basic features of a system characterized by noisy data and complex 

non-linear processes. The artificial neuron is the structural unit of an ANN at is shown in 

Fig.1 In this neuron, information always flows in one direction, from left to right, i.e., there 

is no loop feedback. In the first phase, each input is multiplied by the synaptic weight, w 

and in the second, the weighted inputs and an externally applied bias threshold factor 

adds up and gives net input according to an activation potential [19, 20]. 

An ANN can be defined by a different number of neurons that are connected and 

interact according to their weights. Figure 2a shows a neural network that consist of three 

layers: the input layer (variables used to train the model), the hidden layer (which consist 

of four neurons) and the output layer. Figure 2b shows the most representative activation 

functions used in ANN models. 

 

 

 
 

Figure1. Simplified neuron which consists of the structural unit of an ANN. 

 

 

 

 

 

(a) (b) 

  
Figure2. Simplified ANN that consists of three layers: the input layer (variables used to train the model), the 

hidden layer (which consist of four neurons) and the output layer (a) and a summary of the most common acti-

vation functions, f (b). The functions are (a) sigmoid, (b) Leaky ReLU, (c) tanh(x), (d) Maxout, (e) ReLu, and (f) 

ELU. 

 

2.2. Autoregressive neural network models 

For this application we have developed and applied a self-regulating non-linear au-

toregressive neural network (NAR) working with an external mosquito abundance time 

series [21]. The model is as follows: 
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y(t)=f(y(t-1),y(t-2),…,y(t-p))+e(t) (1) 

Where y is the mosquito abundance which depends on previous mosquito popula-

tion values p and et is error term. The model is trained by a sequence of available mosquito 

abundance data and predicts the population abundance y(t) with data of previous abun-

dances of the same sequency. Furter, to find the best model predictions a combination of 

available mosquito abundance data and different model configuration tests were per-

formed with various delays of mosquito population based on the autocorrelation function 

(ACF). To date, the ACF reveals how the correlation between any two values of the popu-

lation sequency changes as the separation changes. Thus, it is a time domain measure and 

provides a criterion of defining the memory of the population process. 

Further we have used a nonlinear autoregressive model with exogenous input 

(NARX). The model can be defined as: 

y(t)=F(y(t-1),y(t-2),…,u(t), u(t-1), u(t-2), u(t-3),...)+e(t) (2) 

Where y is the studied variable, arthropod vector abundance, and u the exogenous and 

independent variable.  In this study we have considered temperature as the exogenous d 

independent variable. The above expression says that the information about the exogenous 

value of u helps to predict y along with the previous values of y. The error term is e(t). We 

used to two different iteration methods for models training, the Levenberg –Marquart al-

gorithm and the scale conjugate gradient algorithm was used to train the models. This 

algorithm takes less memory. Training automatically stops when generalization stops im-

proving, as indicated by an increase in the mean square error of the validation samples. 

Moreover, for both neural networks we have used a hyperbolic tangent sigmoid transfer 

function in the inner layer and a pure linear function in the output layer [21].  

The model validation was based on the coefficient determination R2 of the predicted 

data in relation to the observed as well the autocorrelations and error distribution. The 

same method was repeated for different training sets to judge whether the network is ap-

propriate to make accurate predictions. The training follows the reverse transmission al-

gorithm error, where at the end of each training cycle the average square error is evaluated 

and adjusted the synaptic weights.  

2.2. Mosquito surveillance data 

Public mosquito trap data available from the open European Union Data Portal (EU 

ODP) (http://data.europa.eu, accessed on 3 May 2019) were used for the study analysis. 

Mosquito surveillance data included adult Culex sp. which were captured CO2 traps from 

mid-May until September and during two successive observation years (2011 and 2012). 

Data were sampled from 11 closely related locations in central Macedonia and Greece. 

The observation area includes semi-urban areas and agricultural landscapes with similar 

habitat characteristics. Data were pooled in order to have an ecological time series of Culex 

sp. populations. Climate data, and in particular, mean air temperatures, were obtained by 

the national observatory of Athens through a meteorological station, which was located 

in Makrohori town, which was in the same level and nearby the mosquito observation 

area (http://stratus.meteo.noa.gr/front, accessed on 2 April 2020). Data were handled as 

vectors, which consisted of close-to-weekly time intervals of the number of adult mosqui-

toes captured and were normalized before the analysis.  

3. Results 

Figure 1a, shows the mosquito abundance autocorrelation function and Figure 1b the 

autocorrelation function for the temperature in respect to different time lags. In both cases 

the autocorrelations do not indicate any abrupt fluctuations and/or clear periodic pattern 

in the mosquito time series with regard to different time lags. For temperature, particu-

larly, the autocorrelation after some perturbations later decay to zero, indicating possible 

http://data.europa.eu/
http://stratus.meteo.noa.gr/front
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the existing of a moving average process, although there is some ambiguity regarding the 

different patterns observed between mosquito abundance and temperature. Based on the 

autocorrelations we conclude that one- or two-weeks lag values should be taken inn to 

account inn modeling mosquito population dynamics. 

Figure 2a and 2b show the architecture of the NAR and the NARX model respec-

tively. Both models predict the mosquito population value based on 1- and 2-week previ-

ous population values (i.e., delay1 and delay2). However, the NARX model takes in to 

account the temperature variable as exogenous factor, additionally to the previous mos-

quito population values, to simulate the mosquito population dynamics. 

 

 

 

(a) (b) 
Figure 1. Autocorrelations of mosquito abundance data (a) and autocorrelations of temperature (b) in respect to different time 

lags (weeks). 

(a) 

 

 

(b) 

 

  
Figure 2. Architecture of the non-linear autoregressive network model (NAR) (a) and the non-linear autoregresive model with 

exognous outputs (b). y(t): mosquito abundance variable, x(t): temperature variable, W: weight, b: bias, 1:2, delays 1 and 2, 10: 

number of hidden neurons. Bothe models are using as activation funnctions a hyperbolic tangent sigmoid transfer function in 

the inner layer and a pure linear function in the output layer. The network structure was generated with the MatLab neural 

network toolbox [21]. 

 

Figures 3a and 3b, presents the response outputs of the NAR and NARX neural net-

work model to the Culex sp. population time series as well as the observed data, respec-

tively. In general, the prediction-output performed well in both cases, although there were 

parts were the output results performed less well and especially during the end of the 
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season. To a high degree this should be addressed to the particular dataset that was avail-

able and the fact that a limited data set was used for training. Nevertheless, considering 

that mosquito population dynamics appeared quite abrupt, characterized by non-linear 

alterations, given the limited data set, the overall model predictions are in acceptable lev-

els for both models. Moreover, the inclusion of temperature as exogenous factor improved 

considerable the NARX model performance and the predicted data follow to a high de-

gree the observations. Note that both, models and data, represent actual mosquito popu-

lation data. 

(a) 

 

 

(b) 

 

Figure 3 Response of the NAR and the NARX neural networks respectively model output to the mosquito population 

time series. 
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Figure 4 Response of the NAR and the NARX neural networks respectively model output to the mosquito population 

time series.  

Figure 4a and 4b, shows the overall model performances for the NAR and the NARX 

models, respectively. For both model predictions are at acceptable levels and the coeffi-

cient determination was r=0.69 and r=0.7, for the NAR and the NARX model, respectively.  

4. Discussion 

In this work we have demonstrated how ANNs can be applied to model the popula-

tion dynamics of arthropod disease vectors and mosquitoes particularly. We have used 

self-regulating prediction neural networks the first without and the second with tempera-

ture as an external auxiliary time series. Based on the results obtained from each training 

it is further judged whether the network is appropriate to make a prediction or not. To 

date that whenever the network is re-trained it generate different results, as the training 

algorithm follows an iterative process which in each test converges to different results. 

Therefore, a combination of available data and tests were performed with various param-

eters in order to train the network and to derive to the best fitting models. 

Based on the results, both models performed at acceptable levels and described the 

temporal evolution of mosquito population dynamics. However, the NARX model, which 

takes in to account temperature as exogenous factors, performed better compared to the 

simple NAR model. This is in accordance with previous studies that have demonstrated 

that the emergence and outbreak of vector-borne diseases is to high degree related of al-

terations in current environmental conditions and temperatures particularly [22], but also 

to other factors; including climate change and favorable environment conditions for vector 

breeding, economic downturns affecting health policies, travel and human migrations [23, 

24]. 

  Furthermore, climate change particularly is one of the most important causes of vec-

tor born disease emergence since it affects directly the population dynamics and geo-

graphic expansion of arthropod vectors and should be therefore taken in to account when 

modeling arthropod vector dynamics [22,23]. Arthropod vectors, such as mosquitoes, are 

poikilotherms species and any increase of mean temperatures may cause direct effects on 

their development, number of generations and geographical dispersion. Additionally, the 

temporal and spatial changes in temperature, precipitation and humidity that occur under 

 

 

 

(a)  
 

(b)  
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different climates may affect the biology and ecology of vectors and intermediate hosts 

and consequently the likelihood of disease transmission [25].  

It is possible that all these factors to affect the final mosquito population dynamics 

and its abrupt dynamics as appeared under natural field conditions. The time horizon of 

the prediction, in the context of this research, is set to one week which corresponds to a 

regular time line used in most entomological studies, although can also not strictly defined. 

In the literature, predictions that have been made by a well-trained network can reach the 

number of already known values and this has been also observed in this study. However, 

in practice the ANN model performance depends on the nature of the data time series, the 

proper network configuration as well as the data set used for validating and model testing. 

Thus, current evidence suggests that inter-annual Culex sp. population dynamics and cli-

mate variability have a direct effect of their temporal evolution and abundance and can be 

predicted through ANNs. 

In conclusion, an overall evaluation of the proposed model results and the factors 

used for their development and training, suggest that they have a strong potential to be 

used to predict the non-linear population dynamics of arthropod vectors. From a public 

health point of view, they are utile to decide whether to implement integrated vector man-

agement, allowing the development of better pharmaceutical and preventive methods and 

for designing effective public health management policies in local and regional scales. 
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