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Abstract: Insects are present in virtually all possible habitats on the mainland but virtually absent 

in the ocean which constitutes 90% of the biosphere. Only a few species are present in the sea, but 

remaining at the surface, salt marshes, estuaries, or shallow waters. Remarkably, a group of species 

manages to endure long immersion periods in the open sea, as well as deep dives, i.e. seal lice. We 

discuss here some of the adaptations that allow seal lice to cope with the amphibious habits of their 

hosts and how they can help understanding why are insect so rare in the ocean. 
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1. Insects and the sea 

Insects are the most ecologically and evolutionary successful organisms on Earth in 

terms of biomass and biodiversity [1]. They have virtually conquered any possible 

environment on our planet with a notable exception: the oceans [2]. Usually, in the 

literature, only a few species of Halobates (Heteroptera: Gerridae) are mentioned as truly 

marine insects living in open ocean [3]. However, these sea-skaters remain on the water 

surface and, therefore, are not actually exposed to high salinity, low temperature, the 

absence of atmospheric oxygen, and high hydrostatic pressure underwater. This absence 

of insects in the ocean (i.e., 90% of the biosphere) and their infrequent presence in marine 

habitats contrast with their profuse occurrence on the mainland, giving origin to varied 

scientific hypotheses and speculation [4]. In this sense, Maddrell [5] argued that the 

absence of insects can be explained because they would be poor competitors against 

crustaceans since they could not survive beyond the first few meters of the water column 

because their tracheal system would not be able to support the increase in the hydrostatic 

pressure [5]. Yet, there exists a particular group of insects that manages to survive 

underwater at great depths and during extended immersion periods, e.g. seal lice. 

2. The lice of the pinnipeds, living an amphibious life 

Lice (Order Phthiraptera) are the only insects that have become obligate and 

permanent parasites throughout their entire life, living as ectoparasites in the feathers, 

fur, or hairs of their hosts [6, 7]. Sucking lice (suborder Anoplura) are a group of 

hematophagous insects from mammals, being present in all the mammalian genus, except 

the Monotremata, Cetacea, Sirenia, Pholidota, Edentata, and Proboscidea. Among the 

great diversity of Anopluran lice, the family Echinophthiriidae is unique in that they infest 
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amphibious hosts, such as pinnipeds (walruses, seals, and sea lions) and the Northern 

river otter [8, 9].  

Pinnipeds are diving mammals, and most sea lions and fur seals usually dive to feed 

[10]. The most extraordinary diver is the southern elephant seal which can reach 2000 m 

deep [11]. During the periods of feeding, pinnipeds can spend several months of the year 

on the open sea [12]. Therefore, during the evolutionary time, echinophthiriids managed 

to adapt to the amphibian biology of their hosts [13]. The survival of an originally 

terrestrial louse in the deep of the ocean implies necessarily that this insect managed to 

tolerate the particular conditions of this environment, as the high hydrostatic pressure, 

the low temperature, and the high salt concentration. 

The adaptation of echinophthiriids to live in association with diving hosts started to 

be investigated only recently. This mini-review provides a reflexive glance on the state of 

knowledge about the adaptations of echinophthiriids, along with biological hypotheses 

and research ways deserving to be explored. 

3. Tolerance to immersion 

Undoubtedly, one of the greatest limitations for echinophthiriids is the fact that eggs 

do not survive underwater [14, 15]. Accordingly, lice reproduction could only occur 

during the periods that the hosts remain on land enough time to guarantee egg 

development, i.e. during host reproduction or molting seasons. For the life history of 

echinophthiriids, this implies that the number of lice generations per year should be 

constrained by the haul-out behavior of their hosts. For instance, for Antarctophthirus 

microchir from South American sea lions, the reproductive season is the only moment of 

the life cycle when the host spends enough time ashore and only newborn pups remain 

outside the water Figure 1 [15, 16]. While for A. lobodontis from the crabeater seal, the 

reproduction and transmission would be only possible on juveniles [17]. Therefore, the 

phenology of seal lice is adapted to the biology and ecology of their hosts [18]. 

To evaluate the tolerance of the nymphal and imaginal stages, we performed a series 

of experiments depicted in Figure 1, i.e testing lice survival under different protocols of 

submersion and temperature [15]. We found that the first nymphs (N1) are unable to 

survive submerged but the following instars and adults tolerate it for several days [15]. 

Previous contributions by Murray and Nicholls [21], reported the death of eggs, but the 

survival of advanced nymphs and adults; however, N1 were not included in the 

experiment. Our results demonstrated that N1 survived submersion only for a couple of 

days. The reduced tolerance to immersions of N1 as compared to more advanced instars 

has been also alleged by Aznar et al. [15], based on the reduction of N1 in the South 

American sea lion pups population when they started to swim. Murray and co-workers 

arrived at a similar conclusion [14, 21], as well as by Kim [22] from the absence of N1 in 

old pups and adult pinnipeds on northern fur seals. The incapacity of N1 to survive 

underwater was suggested to be associated with the absence of abdominal scales [16, 22, 

23], which are present over the body of the other instars. 

The presence of specialized and modified spines, known as scales, is a diagnostic 

feature of echinophthiriids [24]. Scales are absent in the first nymphal stage [22, 23] and 

increase in density and size during their development [20, 23, 25, 26]. Several authors have 

suggested that scales are related to underwater survival [16, 18, 22]. The specific role of 

scales has been discussed by some authors, suggesting that scales could have two main 

functions. Whereas Murray [20] postulated that scales protect the cuticle from mechanical 

damage and against desiccation, Hinton [27] proposed that scales could potentially act as 

a plastron retaining air and allowing respiration underwater. Unfortunately, no critical 

observational or experimental evidence has been yet obtained, supporting or opposing 

either hypothesis. 

When seal lice became in contact with seawater, they confront a decrease in oxygen 

concentration and temperature and an increase in the hydrostatic pressure. We observed 

that as soon as Antarctophthirus microchir makes contact with the seawater adopted a state 
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of quiescence, while for Lepidophthirus macrorhini this takes several minutes Video S1 [15, 

19]. It seems that the tolerance to immersion depends on a reflex reduction in metabolism 

and activity triggered by contact with seawater. This behavior could decrease the need for 

nutrients and oxygen, allowing survival for several days underwater. However, their 

differential survival when submerged in normoxic or in hypoxic water strongly suggests 

that echinophthiriids would be able to exchange gases with the surrounding water [15], a 

capacity never observed previously in the group. Further anatomical and physiological 

research should shed light on the adaptations and mechanisms of aquatic respiration. 

4. Tolerance to hydrostatic pressure 

In another series of experiments depicted in Figure 1, we also found that lice from 

elephant seals can tolerate hydrostatic pressures equivalent to 2000 m depth [19], which 

represents a depth equivalent to seven times the Eiffel Tower under the sea. Moreover, 

before the experiment, a louse was accidentally exposed to 450 kg cm−2 for a couple of 

minutes, and it survived. This represents 30% more hydrostatic pressure than the 

supported by the deepest marine mammal, i.e. the Cuvier’s beaked whale [28] for which 

a maximum diving depth of 3000 m was reported. These experiments showed that seal 

lice exhibit an extraordinary tolerance to hydrostatic pressure (i.e., piezotolerance or 

barotolerance), including rapid dives and climbs to the surface of their hosts [19]. Another 

important feature is that seal lice can tolerate the hydrostatic pressure by themselves, in 

the sense that they do not need to be associated with the host to do so. Therefore, we can 

assume this ability is an intrinsic feature of echinophthiriids [19] and that insects are 

intrinsically capable of tolerating these conditions. 

Furthermore, taking up the idea of Maddrell that postulated that there is a structural 

limitation of the tracheal system to tolerate the pressure [5], we can assume that only air-

filled parts of the body are affected by high pressures. In this sense, it is expected that only 

the tracheal and the digestive systems collapse during diving. Therefore, we can expect 

that the louse expels all the air from the tracheal system to tolerate this collapse. If, as we 

mentioned before, lice survive the long trips at sea maintaining a basal metabolism, the 

unresolved question is how they can survive without atmospheric oxygen. In this sense, 

some adaptations present in many other insects could be associated, one is the ability to 

obtain oxygen from the water (through tegumentary diffusion or a plastron) and another 

is the storage of oxygen associated to respiratory pigments. Even though infrequent in 

insects, these pigments have been found in species living in environments where oxygen 

is scarce or its availability erratic [29, 30]. 

5. Conclusions and future research 

Beyond any doubt, seal lice are quite unique insects. Their long evolutionary history 

in association with amphibious hosts, combined with obligatory ectoparasitic nature 

along with their whole hemimetabolous life, have exposed them to selective pressures 

that no other insect experiences. The understanding of the specific morphological, 

physiological, and behavioral adaptations making it possible to tolerate the extreme 

conditions that they endure during their ectoparasitic life has just begun. A major piece of 

information recently acquired is particularly revealing: they do not die during the long 

excursions in the open sea of their deep-diving hosts. As trivial as this assertion could 

appear, it puts aside the conservative idea that lice would die in the sea and those 

remaining in the mainland would somehow survive and wait for the return hosts ashore 

the next reproductive season. Their capacity to survive in extreme environments being 

adequately confirmed, we can now focus on the next scientific challenge, i.e., explaining 

how. The previous sections present some hypotheses to be tested and research leads to 

follow, which should help to complete the puzzle. 

Beyond their own biology, seal lice push us to abandon the vision that “insects are not 

made to survive in the ocean”, based on arguments related to their body plan, as their 
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respiratory system or non-transparency. Our present knowledge does not reveal unique 

or extraordinary structural or physiological adaptations in seal lice explaining their 

extraordinary endurance. On the contrary, simply the adequate combination of 

characteristics present in many other insects could justify their performances, at least 

hypothetically. 

So, if insects are able to live in the oceans, a legitimate question is why are there 

virtually absent? The study of seal lice has begun to shed some light on this major question 

in entomology and we hope that they will continue to do it in the close future, despite the 

constraints imposed on scientists by their particular biology. 

 

Figure 1. Differential tolerance to immersion in seawater of seal lice. Only advanced nymphs and adults survive, but not 

eggs or early nymphs. 

 

Figure 2. Tolerance to high hydrostatic pressure in seal lice, tested in a hyperbaric chamber, simulating different diving 

depths. 
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