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Abstract: 

The role of calculus of variations in aerodynamics studies is related to the study of optimization 
problems in aircraft dynamics which include the study of the optimal trajectory using the least fuel 
consumption or optimum geometry in aircraft design or optimal distances of the aircraft or rocket 
trajectory subjects to certain conditions. In the calculus of variations, the optimal solution is obtained 
by the Euler-Lagrange equation. The fractional calculus is a mathematical theory for calculating 
derivatives and integrals where the order can be fractions or complex numbers. There are numerous 
applications of this theory in various fields of science and engineering today. In this paper, we have 
applied theory of fractional calculus to formulate the generalized term of Euler-Lagrange equation. The 
ubiquitous equation in mechanics and other field. 
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1. Introduction  

Mathematical theory of calculus plays a major role in describing the physical behavior of various 
systems in nature. The theory has two aspects to study, the differential calculus and the integral 
calculus. Traditionally studied calculus are in the form of an integer order. A mathematical theory 
that studied non-integer order operators are fractional calculus. The concept of fractional calculus can 
be traced back to the same period as classical calculus. The theory has originated from the query from 
the French mathematician L'Hôpital asked the German mathematician Leibniz about the meaning of 
half-order derivative in 1695 [1-4]. Although theories evolved around the same period of classical 
calculus, they were not widely studied because of the unfamiliarity [1]. 

The theory was interested again in 1974 with the publication by Oldham and Spanier [1] and the 
introduction of new ideas in applications such as the geometric interpretation of operators. In 2002 
Igor Podlubny proposed an interpretation of fractional integrations as a shadow cast on a wall [5] and 
in 2003 Tenreiro Machado published an interpretation of fractional integrations by describing as 
probability based on the Grunwald Letnikov definition [6]. Today, theory of fractional calculus has been 
widely applied studies in the field of science and engineering include viscoelasticity, electrochemistry, 
biological population models, nonlinear dynamics, control engineer and signals processing [1-4]. 

Due to the advanced development of the theory. It was found that the many systems can be 
described closer to the physical characteristics than the integer-order calculus [1][2]. The fractional 
derivatives are feasible to describe the memory and hereditary properties of various materials and 
processes [4]. There are several definitions for fractional integral have been proposed, for example, 
the fractional integrals of Riemann-Liouville and Liouville, Weyl and fractional derivative also has 
several definitions such as Riemann–Liouville, Grünwald–Letnikov, Caputo, Liouville, Weyl, Riesz, Hifler 
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and Marchaud [1-4]. The Riemann-Liouville and Grunwald-Letnikov are mostly used definitions. The 
Riemann-Liouville definition is suitable for finding the analytical solution; while the Grunwald-Letnikov 
definition is suitable for numerical evaluations [4].  

2. Calculus of variations 
The branch of mathematical analysis that uses small changes in functions to find the extremum 

of functional is called calculus of variations. The earliest problems posed in the calculus of variations is 
brachistochrone problem [10-13]. The least-time variation problem, which was first solved by Johann 
Bernoulli in 1696. The problem of finding the shortest distance between two points in space influence 
of gravity, which feasible to explain by analytical techniques of calculus of variations. The problem 
described the trajectory of the sliding bead from rest and accelerate by gravity without friction from 
one point to another in the least time. The solutions of the calculus variation problems are able to solving 
by the second-order partial differential equation of Euler-Lagrange equation [10-13]. 

The applications of calculus of variations in the science and engineering fields include solutions 
to the brachistochrone problem, tautochrone problem, catenary problem, geometric optics and Newton's 
minimal resistance problem, Plateau's problem which show the existence of a minimal surface with a 
given boundary, optimum shapes of aircraft and missile component in aerodynamics which required 
desirable aerodynamic characteristic such as minimum drag or maximum lift-to-drag ratio and finite 
element method with a variational method for finding numerical solutions to boundary-value 
problems in differential equations [9-13];  

The concept of the infinitesimal change in calculus of variations can be applied with fractional 
calculus operators to provide some useful results. In this paper, we have applied theory of fractional 
calculus to formulate the generalized term of Euler-Lagrange equation. The equation mostly uses in 
mechanics and other fields. The result is obtained by using the fractional variation principles in this 
study, the fractional Euler-Lagrange equation is derived. 

3. Basic Definitions and Preliminary Results 

The fractional calculus is the mathematical theory that have many definitions. In this section the 
definitions of Riemann and Liouville fractional derivatives adopt from the book by Samko et al., is 
introduced [3]. 
 
Definition 1 The Euler’s Gamma function is defined by  
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Definition 2 Let f be a real function defined on [0, 1] and , 0   , then the left and right Riemann-
Liouville fractional derivative of order ,   of the function f are defined by the following 
 
The Left Riemann-Liouville Fractional Derivative 
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The Right Riemann-Liouville Fractional Derivative 
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where ( )   it is the Euler Gamma function and 0 , 1     

4. Euler–Lagrange equation 

The theory of physics which explained the motion of macroscopic objects by Newtonian 
Mechanics and Lagrangian mechanics is called Classical Mechanics. It was found that both theories 
produced similar results. The Lagrangian mechanics are explained in terms of integer-order derivative 
and generalized coordinates, hence The Lagrangian mechanics have much advantage than the 
Newtonian mechanics that more specific to calculations in the orthogonal coordinate system [10-13].  

Euler and Lagrange have developed the Euler-Lagrange equation with their studies on the 
tautochrone problem in the 1750s [9]. The problem of finding the trajectory of the weighted particle 
fall off to a fixed point in a fixed amount of time, independent of the starting point [10-13]. It is a 
second-order partial differential equation whose solutions are the stationary functions [9].  
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Theory of fractional calculus, provided the generalized form of the Euler-Lagrange equation. Many 
authors have studied different approached in formulated the fractional Euler-Lagrange equation. 
Agrawal has studied the linear Euler–Lagrange equations and the transversality conditions for fractional 
variational problems [14]. Guezane-Lakound et al., explained the solutions for a nonlinear fractional Euler-
Lagrange type equation involving both the left Riemann-Liouville and the right Caputo types fractional 
derivatives [15]. Matheus et al., have obtained the Euler-Lagrange equation in integral form by 
generalizing the DuBois-Reymond fundamental lemma to variational functionals with Caputo derivatives 
[16]. Baleanu et al., have studied the numerical study for fractional Euler-Lagrange equations of a 
Harmonic Oscillator on moving platform [17]. 

5. Materials and Methods 

The calculus of variations is a theory of finding maxima or minima of the given integral. Consider 
the system that described by an integral function of time, coordinates and derivative. The integral is 
extremum when the integral satisfies the Euler-Lagrange equation [10-13]. 

Minimized 
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Likewise, there exist systems that are feasible to describe their behavior with fractional differential 
equations. Assume that set of given functions defined in the given interval [a, b] which have 
continuous left and a right fractional derivative of order  and   respectively [14]. 

 
Theorem 1. Let ( , )J x t is integral function of the form 

Minimized 
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The necessary condition for integral to have an extremum for a given function, then the integral 
must satisfy the generalized form of Euler-Lagrange equation. 
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Proof of Theorem 1. By varying the integral with infinitesimal quantity.  
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Consider the second term from right hand side 
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integrated by part, then we obtained: - 
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Thus term in (10) become: - 
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From boundary condition, the second term in equation (13) is zero, so we have the following values: 
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Likewise, the third term of equation (9) become 
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then substitute equation (14) and (15) into equation (9) then we have 
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Since 0J  , therefore, we obtained the fractional Euler-Lagrange equation 
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Conclusion 

In this article, fractional calculus has been applied to find the generalized form of Euler-Lagrange equation. By 
assuming that system is described by fractional differential operators. The solution that obtained by solving the 
optimization problem in calculus of variations. The result can be applied to solve engineering optimization 
problems. 
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