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Abstract: Bees are the major pollinators of agricultural crops and due to numerous factors, the global
bee population is declining drastically. Identification and extraction of numerous body features of
bees can allow us to understand the population dynamics and bee-hive health of an agricultural
area. Morphological key-based bee studies are well established procedures for these tasks, which
are time consuming and need critical knowledge about different bees species. Recently, numerous
machine learning (ML) methods have been implemented on numerous insect species, but there
is a scarcity of deep learning models for morphological studies of bees. In our current study, we
applied ML methods to extract variants of class activation maps that visually display distinguishing
morphological features of bees. We sourced an image data set of eleven different species of Bumblebee
(Bombus sp.), Honey bee (Apis sp.) and Carpenter bee (Xylocopa sp.) from iNaturalist, curated and
fine-tuned against fifteen state-of-the-art image classification models. An accuracy of 93.66% was
obtained with a ResNest101e model, and including data augmentation improves the performance to
the highest accuracy of 94.27%. We also compared the ML extracted visual features with traditional
morphological key-based features and showed existing unsupervised ML models are error prone in
numerous instances due to their focus on overall features, whereas manual methods benefited by
focusing only on the main discriminating body features, showing a potential scope of improvement
the existing models. Overall, our model will be implicated in bee-morphology based tasks of
apiculture, such as distinguishing between healthy and parasitic bees, and classification tasks of
similar insect species.
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1. Introduction

Bees are the essential element of our ecosystem, contributing as primary pollinators
of agricultural crops and promote the sustainable development of our ecosystem [1,2].
Approximately 25000 bee species has been reported worldwide [4]. In recent years, there is
a clear declination trend in both wild and domesticated bee populations around the world,
with threats including the loss of habitat, increased use of pesticides, invasive species and
climate change [15,16]. In parallel this would result in the decline in the wild plant and
crop population with the 75% of the latter mostly pollinated by bees [17]. The decline in bee
populations is of concern not only to the greater ecosystem, but also in industries relying
on bee products. Various industries relying on the produce from bees such as the honey
and wax industries would suffer greatly. The study of bee morphology and identify them
down to the species level would allow us to understand bee-hive health and population
dynamics in target areas for which specific measures can be taken to maintain and promote
their livelihood and impact on the greater ecosystem [3].

Traditional bee morphology studies were mainly focused on systematics of different
bee species. Systematics is a prevalent task, which involves manual collection of mor-
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phometric data such as wing data and curation by a domain expert (taxonomist) [19].
Recently numerous DNA-based [20] and machine learning (ML) based [5–7] approaches
had been implemented to compensate workloads in bee systematics, but there is a still
lack of approach for bee morphology studies [20]. Recent advances in ML models have
paved the way to accurately derive discriminating features from general images, which has
potential to overcome manual curation works in morphological works. In particular, the
advent of Convolutional Neural Networks (CNN) [8,9] for image analysis have produced
models with identification accuracy comparable or better than humans in multiple visual
recognition tasks [9–12]. CNN models achieved high accuracy (90%+) when differentiating
between closely related subordinate level categorisation using general image data [14].
DeepABIS [45] and ABIS [5] models utilised different CNNs to automatically generate
features from wing images of bees to classify up to species and subspecies level, but both
of the models need heavily curated wing data set. Data acquisition and feasibility for
such extensive models become thus low as these curating procedures are extremely labour
intensive and sometimes impossible depending on the number of bee species. Although
the imaging of bees wings are few and specific, there are a number of extensive public data
set of general images of bees with diverse backgrounds. A image-based ML model, capable
of successfully identifying bees and their distinguishing morphological features, would
allow us to measure population dynamics more quickly and conveniently, levels of decline
and thus empower us with the information to generate conservation strategies.

In this paper, we explore the task of bee morphology study with various deep learning
models and qualitatively analyse the effectiveness of class activation maps from the best
performing model on extracting distinguishing features from our chosen eleven bee species.
A successful extraction of distinguishing morphological features from the class activation
maps would allow us to fine-tune ML models to achieve better results on classification
tasks with the same population of bee species, on top of this, we can gather valuable data to
explore what a machine learning model considers the distinguishing differences between
bees in a particular subset of species.

2. Methodology

To briefly describe our experimental design, we collected bee images from public
domain, studied the key morphological features from existing literature and compared
the features with ML extracted features to determine the discrepancy between traditional
and state-of-art ML methods and probable solution to enhance the model accuracy for
studying bee morphology. To extract ML extracted features, we used numerous ML models
to classify different bee species, identified two best performed models, enhanced their
performance using data augmentation and implemented class activation map (CAM).

2.1. Data collection and pre-processing

The images of current study were sourced from iNaturalist.org, which contains images
of different organisms, with 92.3% to 97.3% proper taxonomic annotations or classifications
[37]. We focused on the major three bee genera around the world, namely - Apis, Xylocopa
and Bombus. Bees of Apis and Bombus genera are known as honey bees and bumble bees,
well known for producing honey and wax, whereas bees of Xylocopa genus are called
carpenter bees, which do not produce honey and some are known as parasitic to wood
plants. From these three genera, we choose top eleven species based on the number of
available images and selected following species: A. mellifera, X. virginica, X. micans, X.
sonorina, X. tabaniformis, X. violacea, B. griseocollis, B. impatiens, B. pensylvanicus, B. terrestris,
and B. vosnesenskii. Images were downloaded in bulk using an in-house python script, and
the number of images were balanced based on the lowest available images of X. micans.
Finally the data set contains a total of 24,695 images of bees, with 2,245 images of each
species. For pre-processing, we resized the images to 224 x 224 pixels and normalised to fit
into pre-trained ImageNet models. From this processed dataset, 80% and 20% was used for
training and testing purpose.
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2.2. Traditional Key Features

We collected traditional key morphological features of the 3 genera obtained from
dichotomous keys and related genera studies [34–36]. In particular, we focused mainly on
distinguishing visual features (e.g. body coloration, body shape, size, wing features), which
can be captured in visual images, and models can use them as classifiers for classification.

Table 1: Major morphological features of three bee genera [34–36].

Genus/
Features Apis Bombus Xylocopa

Body size 7 to 19mm 10 to 40mm 13 to 30mm
Body shape Elongated Broad and stout Elongated

Body hair Moderately hairy
Densely long-haired
especially towards
the apex

Moderately hairy
with black hairs

Body bands Several abdominal
grey bands Fewer to none bands Usually no bands

Body coloration Yellow to grey Black to yellow, with
black furr Black to yellow

Wing coloration Clear Clear to smoky
brownish

Strongly purplish-
iridescent

Eye Hairy eyes Bare eyes Hairy eyes

Leg features Hind tibilia spurs ab-
sent

Hind tibilia spurs
present

Hind tibilia spurs
present, hairy hind
leg

Hind wing Jugal lobe absent,
strong venation Jugal lobe absent Jugal lobe present,

strongly papillated
Wing marginal
cells Long and narrow Shorter and broader Very long with

rounded apex

Wing stigma
Small and slender,
shorter than pres-
tigma

Wider than pres-
tigma

No stigma with very
long prestigma.

2.3. ML Models for classification and feature extraction

We implemented eleven state-of-the-art deep learning models, which were pre-
trained with ImageNet for fine-grained image classification tasks, namely EfficientNet[21],
ResNest101e[27], CSPDarkNet[28], TresNet[22], RexNet[23], CSPResNet[29], NoisyStudent[26],
Vision Transformer[24], LCA-CNN[42], SpinalNet[32], and RegNet[31].

These models were executed using either a modified version of Wightman’s pytorch-
image-models [25] or a direct code implementation. Further, all layers in the models
were fine-tuned for our bee dataset. The deep networks were trained using a mini-batch
stochastic gradient descent optimiser with a batch size of 32. Learning rate, momentum,
and weight decay were kept at 0.01, 0.9, and 0.0001 respectively. We also employed a
dropout[43] value of 0.2 to prevent overfitting. Each model was executed for a total of
100 epochs with a NVIDIA 2070 RTX GPU with 8gb onboard memory. Further, for data
augmentation, we applied RandAugment [33] with a 50% chance and a transformation
magnitude of 9 to the best two performing models onto our dataset. We utilised the
gradients within the best performing model to obtain a Gradient-weighted Class Activation
Mapping (Grad-CAM [44]) which visually indicates the discriminative region used by the
model to classify bee species. We used a modified Grad-CAM++[38] which outperformed
than the original Grad-CAM on providing visual explanations for deep learning models.
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3. Results

Our first step was to determine and train a deep learning model on our bee data
set in order to obtain a machine-based representation of each class. We experimented on
eleven different state-of-the-art deep learning models for image classification in order to
determine the best architecture for our bee task. Major distinguishing features of three bee
genera has been shown in Table 1.Further, figure 1 illustrates the classification accuracies
obtained based on different CNN architecture families. Models of EfficientNet, ResNet and
other families got accuracies of 92.13±0.75%,91.57±1.13%, 89.21±1.22% respectively.

Figure 1. Classification accuracies across (A) different model families, (B) different ResNest
models, (C) different efficientNet models and (D) best two models with data augmentation

From the ResNest family, ResNet101e, Tresnet, CSPResNet50 and ResNetv2 got ac-
curacies of 93.66%, 92.25%, 92%, 88.38% respectively. Models of EfficientNet families
outperformed all of the models. Tfefficient got accuracy of 90.86%, whereas with the
inclusion of noisy student, it improved to 93.41%. Overall, among the eleven models,
ResNest and TFefficient Net with noisy student best performed on highest accuracy for bee
classification. We used state-of-art data augmentation methods on these top two models
to boost their classification performance. We have found that the performance of both
models improved as a result of RandAugment, where ResNest101e and TFefficient Net
with noisy student models resulted in the accuracy of 94.27% and 94.07% respectively. For
CAM, we used the best performed ResNest101e model to retrieve features from bee dataset
with highest confidence (Figure 2). A qualitative analysis of the images compared to the
traditional morphological features of their genera showed us - For Apis and Bombus, the
ResNest101e model mainly focused on the abdomen, lower parts of the head and also able
to capture both the body colouration and strips. on the other hand, for Xylocopa, the model
focused more on the wings and head portions of the bee with CAMs often following the
shape of the wings.

4. Discussion

In our research we have aimed to produce a modified model capable of producing
visual maps displaying distinguishing features between bees spanning three genera and
eleven species. Using a modified ResNest model and data augmentation, we got 94.27%
classification accuracy. Further, Grad-CAM++ implementation on our model resulted in
CAMs of the best samples images indicative of their respective class. With a qualitative
analysis and comparison of the CAMs against traditional key morphological features for
each genus we find that the CAMs produced are insufficient in fine-tuning and discovering
key features between each class.
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Figure 2. Raw and CAM images of different bees species resulted from our model

ResNest is able to outperform EfficientNet based models on various object detection
and segmentation transfer learning tasks as well as image classification on ImageNet [39].
Our modified ResNest model well-suited for fine grained classification task of bee species,
compared to other state of the art models as it achieves the highest classification accuracy
of 94.27%. In our experiments we also explore the effects of model scaling with regards
to classification performance improvement for our task. On the topic of ResNest, despite
the lower amount of pre-trained data the split attention blocks potentially work well to
improve learned feature representations for our task, with the scaled depth helping to
learn complex features of the bees such as wings. An analysis of the models leads us
to the following conjectures regarding their high performance against the bees database.
First we can compare the usage of pre-trained data in each model, both NoisyStudent
and TensorFlow EfficientNet use JFT-300M and ImageNet as opposed to a majority of the
other tested models including ResNest. Naturally this increases the performance of the
models. Comparing the performances of the less scaled models (e.g. tf-efficientnet-b0
and ResNest50d), we have found that, scaling up the image resolution, depth and width
provide accuracy boosts. Scaling of all three dimensions provides larger improvements
to the accuracy as opposed to the singular depth adjustment in ResNest. Despite this,
we can see that the modular split attention blocks in ResNest are much more effective
for a fine-grained classification task.With regards to NoisyStudent we can see from the
improvement in accuracy compared to the base tf-EfficientNet-b3 model that potentially
the forceful generalisation of the student teacher model helped with the small feature
representations in the bee database.

Previous works on classifying bees such as DeepABIS [45] and ABIS [5] have focused
on images of bees in controlled environments and mainly on their wing data. The focus on
wing data aligns with our findings of traditionally recognised distinguishing features of
bees in Table 1, which, along with the controlled lab imaging environments explains their
relatively high classification performance. As it is often difficult to inspect fine features
of bee wings in our general image data set, there has been a larger focus of our model to
distinguish based on other largely visible body features and this can be identified in the
CAM images. Thenmozhi et al. [40] uses a ResNet101 model on a data set of 40 insect
species and achieves an accuracy of 93.99%. With a larger data set and scope of insect
species we can attribute the success of the model cropped and zoomed in images of the
insects in the data set as opposed to the general images in our study. Nguyen et al. [41]
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achieves its highest accuracy of 95.52% with an EfficientNetb3 model on a data set of
4,449 images of 5 different insect families (Ladybird, Mosquito, Grasshopper, Butterfly,
Dragonfly). The large number of differences between these insects is a large factor in the
success of their model, in comparison, with our data set of eleven different bee species with
complex backgrounds, we still achieve similar accuracies with an EfficientNetb3 model
(93.136%). From our analysis of traditional morphological features in Table 1, we have
found wing features are the most discriminatory, however, as the images in our data set do
not have normalised imaging conditions and are often of low quality, our trained models
were focused mainly on larger features as can be seen in the CAM images.

Comparatively, our study explores the distinguishing visual features that can be
extracted from the models, in particular we analysed the Grad-CAMs based on our best
performing model ResNest101e. The CAMs, resulted from our study, are not visually
specific enough to conduce fine-grained features as distinguishing features of a bee genus.
However, while this is the case, our experiments show that more general areas of a bees
body can be successfully distinguished between classes despite the vastly imbalanced
nature of user-images. For classes between the Apis and Xylocopa genus this can be more
than enough to distinguish two samples, however, for bees with overlapping features such
as species within the Xylocopa and Bombus genus, the visual features extracted by the CAM
may prove to be insufficient. The inefficiency of the interpretability of the CAMs for our
task can be identified by the lack of feature knowledge by the deep learning models. While
to us humans morphological features of bees can be identified visually from images, it
is difficult for a model to learn and categorise these features from a single class labelled
image.

5. Conclusion

In our study, we explored the morphology of bee species and proposed the usage
of Class Activation Maps to obtain visual indicators of distinguishing features. We con-
structed a data set of 24,695 bee images spanning eleven species and three bee genera,
used different state-of-the-art deep learning model architectures and obtained the highest
accuracy of 94.27% with a ResNest101e model following data augmentation. From an
analysis of samples with the highest model confidence we conduce that CAMs are sufficient
to highlight general areas of bees that are enough to distinguish species such as in the Apis
and Xylocopa genera, however, insufficient for those with many overlapping features. A key
limitation in our approach is the lack of defined feature annotations for each input image
which stifles the deep learning models ability to learn key features. A lack of computational
processing power also meant that we were unable to explore further on a larger set of
classes. Future work could be conducted on a smaller set of annotated bee images outlining
morphological features of each bee in order to obtain more robust classification and visual
results. Additional modified CAM approaches could also be considered such as applying a
majority membership alongside annotated feature areas of interest.
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