

Portable electrochemical detection of illicit drugs in smuggled samples: towards more secure borders

> CSAC2021: 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry Electrochemical Devices and Sensors Session

<u>Marc Parrilla</u>, Amorn Slosse, Robin Van Echelpoel, Noelia Felipe Montiel, Filip Van Dumme, and Karolien De Wael

PROBLEM \rightarrow DRUG CONSUMPTION IN SOCIETY

82 %

Opioids are

found in 82 % of fatal

overdoses

34 %

Heroin and other opioids

High-risk opioid users **1.3 million** 660 000

AXFS

ntwerp X-ray Analysis, Electrochemistry & Speciation

University of Antwerp

opioid users received substitution treatment in 2018

Source: European drug report: trends and developments. Edition 2020. EMCDDA

Drug treatment requests

Principal drug in

about 34 % of all

drug treatment

requests in the

European Union

SOLUTION: BLOCK DRUG TRACKING & SEIZING IN THE STREET Current methods (e.g. Raman) exhibit challenges!

Building the library: Electrochemical profiling of illicit drugs

Detection of targeted illicit drugs according to its oxidation potential at certain specific conditions

Figure 1. Electrochemical profiles of illicit drugs (0.5 mM) obtained by square-wave voltammetry (SWV) using SPE at different pH: A) pH 12; B) pH 12 using preanodized SPE; pH 5; and pH 10 including the derivatizing agent NQS.

Building the library: Electrochemical profiling of cutting agents

Figure 2. Electrochemical profiles of common cutting agents (0.5 mM) obtained by square-wave voltammetry (SWV) using SPE at different pH: A) pH 12; B) pH 12 using preanodized SPE; pH 5; and pH 10 including the derivatizing agent NQS.

Portable electrochemical device for the on-site detection

Figure 3. A) Elements of the electrochemical device (1-potentiostat, 2-buffer container, 3-SPE, 4-disposable spatula, 5-disposable pipette, 6-confiscated sample); B) Sampling procedure; C) deposition of the solution on the setup ready for the electrochemical interrogation; and D) user-friendly interface showing the results of the analysis with identification.

Results of the analysis of seized samples.

Seized illicit drug	Accuracy electrochemical device	Accuracy portable Raman
Cocaine (n=10)	100 %	70 %
Heroin (n=10)	100 %	10 %
MDMA (n=10)	100 %	100 %
Amphetamine (n=10)	100 %	20 %

- 10 seized samples were analyzed for each illicit drug. A total of 40 samples.
- The accuracy was calculated according to the GC-MS analysis.

Conclusions

- 1. The construction of a library from electrochemical profiles of illicit drugs and common cutting agents at different conditions is performed.
- 2. Development of a tailor-made script with the integration of the peak potentials of each target for automatic identification.
- 3. The analysis of 40 confiscated samples from illicit drugs is attained using a portable electrochemical device.
- 4. The analysis of the confiscated samples is validated by GC-MS and compared with portable Raman commonly used by law enforcement agents.
- 5. The electrochemical device outperformed the commercial Raman device.

Acknowledgements

- European Union's Horizon 2020 research and innovation programme under the grant agreement No 833787, BorderSens.
- University of Antwerp (IOF)
- Research Foundation Flanders (FWO)
- National Institute for Criminalistics and Criminology, Belgium

https://bordersens.eu/

AXES Antwerp X-ray Analysis, Electrochemistry & Speciation University of Antwerp

https://www.uantwerpen.be/ en/research-groups/axes/

