

Carbon Dots as a Fluorescence pH Nanosensor by Application of an Active Surface Preservation Strategy

Ana Carolina P. Afonso, Luís Pinto da Silva

up201207846@edu.fc.up.pt

1st International Electronic Conference on Chemical Sensors and Analytical Chemistry

01-15 July 2021

pH monitorization

- **×** Temperature-dependent response
- × Rigid design
- ✗ Fragility

Carbon Dots

Carbon Based Fluorescent Nanoparticles

Advantages

- ✓ High photoluminescence
- ✓ High aqueous solubility
- ✓ Low cost
- ✓ Low toxicity
- ✓ Good biocompatibility

Challenges so far

- Arbitrary target analytes
- Intricate post-synthesis functionalization
 steps
- Limited range of pH
- Interfering potentials in complex media

For Comparison Effect

CD without Fluorescein

5

Morphological Characterization

XPS Analysis

UV-Vis Analysis

Fluorescein

- Band at ~440nm in acid pH
- Red-shift to ~490nm in basic pH

CDs with Fluorescein

- ~500nm band formation in basic pH
- Intensity $\propto pH$

CDs without Fluorescein

- No band at ~500nm
- No pH-sensitive response

pH-response

pH-response

- Photostable under visible light irradiation
- Stable towards variations of the ionic strength
- Negligible effect in fluorescent intensity in the presence of interferents
- ✓ Good pH reversibility

Real Water Samples

	Laboratory	Residence
pH-meter with pH electrode	7.93 ± 0.01	7.99 ± 0.05
Fluorescence measurement with CD _F	7.59 ± 0.04	7.69 ± 0.18
Samples obtained from tap water from two locations of the Porto Municipal area		

Biocompatibility

MTT viability assay

- SH-SY5Y, Human Neuroblastoma Cell Line
- No significant drop in cell viability

Summing up

Fluorescent pH nanosensor was developed via ASP strategy

Determined pH values from 3.7 to 12.1

pH-selectivity, reversibility and photostability

Biocompatible with human cells

THANK YOU FOR YOUR ATTENTION

CARBON DOTS AS A FLUORESCENCE PH NANOSENSOR BY APPLICATION OF AN ACTIVE SURFACE PRESERVATION STRATEGY

Ana Carolina P. Afonso

up201207846@edu.fc.up.pt

Special thanks to my advisors:

Acknowledgments:

Prof. Dr. Carlos Pereira Dr. Luís Pinto da Silva

Maria del Valle Martínez de Yuso, Manuel Algarra HR-TEM & XPS

Nuno Vale MTT viability assay