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Abstract: For facilitating the process of transcriptomics data, and to guarantee the reproducibility of
our analyses, we developed AskoR, which is a R library for performing a suite of statistical analysis
and graphical output from gene expression data obtained by sequencing (RNA-Seq). From raw
counts, it makes it possible to filter and normalize the data, to check the consistency of the samples,
and to carry out differential expression tests, GO terms enrichments, and clusters of co-expression,
with a large number of figures in the output. AskoR can be downloaded and used in your favorite
R environment or directly accessible through a Galaxy portal like the one which is hosted by the
BioInformatics Platform for the Agroecosystems Arthropods (BIPAA).

Keywords: BioInformatics Platform for Agroecosystems Arthropods; RNA-Seq; differential expres-
sion; clustering; Gene Ontology enrichment

1. Introduction

The BioInformatics Platform for the Agroecosystems Arthopods (BIPAA) is a bioinfor-
matics platform from the French Research Institute for Agriculture, Food and Environment
(INRAE). It is dedicated to support genomics and post-genomics programs developed
on insects associated with agroecosystems, and assists cooperation and coordination of
multiple communities working on arthopod genomics. The Information System has been
created more than 10 years ago to support the International Aphid Genomics Consortium
(IAGC), in order to annotate and curate the pea aphid genome [1], and has been continu-
ously improved and extended until the recent achievement of the genomes of phylloxera
(Daktulosphaira vitifoliae) [2], various parasitoid wasps (Hyposoter didymator, Campoletis
sonorensis [3], Cotesia congregata [4], Aphidius ervi and Lysiphlebus fabarum [5]) or Spodoptera
frugiperda [6]. Consequently, BIPAA is the home of several public reference databases
including AphidBase, LepidoDB and ParWaspDB, each hosting multiple insect genomes.
Altogether, 38 genomes are currently available online, and its infrastructure has evolved to
support the load of numerous new genomes and to facilitate browsing and navigating. For
each species, a collection of web applications allows users to explore reference genomes or
transcriptome assemblies and annotations (e.g. genome browser, gene reports), to compare
genomics regions (synteny viewer), to analyze these data with multiple tools (e.g. align-
ment of various sequences, annotation, SNP prediction etc.) through a dedicated Galaxy
server [7] or specific web applications (e.g. a blast form), or to correct or add information
by curating the genome annotations within Apollo [8]).

RNA-Seq studies are now affordable and widely used in many laboratories. In
insect science, this method is still currently use for studying phenomena, such as the
molecular responses of whole insects, organs, and tissues to different biotic or abiotic
stresses, including exposure to insecticides, infection with microbes, or feeding on different
hosts, and improving our knowledge of gene expression changes associated with immunity,
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detoxification, chemoreception, or reproduction [9–15]. Many statistical methods have
been developed, so far, for analyzing RNA-Seq data from raw counts and to identify
differentially expressed genes (DEGs) [16–18], search for enrichment of functions in gene-
lists [19,20], create Venn diagrams [21], or for searching for clusters of co-expressed genes
[22,23]. Many of these analysis tools require programming skills in R or paid software
subscriptions, such as OmicsBox[24] or CLC Workbenches [25], making it difficult for many
researchers to implement reproducible workflows. On the other hand, some reproducible
workflows have been designed [26] for managing RNA-Seq data from the mapping on
a reference annotation (genome or transcriptome) but these workflows do not include
a full set of supplementary analysis for statistically and graphically exploring data by
classification or enrichment.

Additionally, DEGs can often be integrated with other data types to improve the
robustness of studies, such as QTL analysis, orthology studies, epigenomic landscapes, and
proteomics or metabolomic studies. Thereupon, the semantic web technology (consisting
in data modeling in structured format such as the Ressource Description Framework
(RDF) allowing its querying with the SPARQL language), gives the opportunity to link
various information from various sources into graphs of data. Moreover, we are developing
AskOmics [27,28] which provides a web interface to upload and integrate heterogeneous
data files (GFF, BED, and tabulated formats) into RDF and a visual SPARQL query builder
software to allow the experts to compose and execute expressive and semantically-rich
queries.

Here, we report AskoR, a R pipeline for the analysis of gene expression data with
a simple and reproducible script. It includes several steps (data filtering, normalization,
sample validation, differential expression analysis, Gene Ontology enrichment and co-
expression) and produces numerous files directly uploadable into an AskOmics instance in
order to be linked with other data.

2. Materials and Methods
2.1. Installation and deployment

AskoR can be directly installed from the git repository (https://github.com/askomics/
askoR). An AskoR Docker image, including a preconfigured RStudio instance, is main-
tained on GitHub (https://github.com/genouest/docker-galaxy-rstudio-askor). This
image can be used in a Galaxy server as an interactive tool, allowing to use the precon-
figured RStudio-AskoR environment directly from the Galaxy web interface. Instructions
on configuring a Galaxy server to make use of this image are available on the GitHub
repository.

2.2. AskoR implementation, usage and dependencies

AskoR is a R package, it consists in a R library, which has to be loaded in a script. A
user guide is available at the web site. As a template or example, we are providing a R
script running sequentially each function which can be adapted to the needs of the user.
AskoR has many parameters and flags (for example method of normalization, p-values or
CPM thresholds) with default values which can be modified before or during the process.
A complete list of parameters is available on the wiki. Because AskoR takes advantages of
various R packages, it has many dependencies which have to be installed locally on the user
R environment, or already available in the docker environment. The main dependencies
are edgeR, limma, ggfortify, ggplot2, topGO, UpSetR and coseq.

2.3. Differential expression analysis

After a filtering step where the genes with low counts were excluded from further
analyses (i.e. keeping genes with CPM values higher than a threshold for a minimal
number of samples). AskoR uses the calcNormFactors function of the edgeR library [16],
for scaling the data among all libraries and removing the effects of outliers. The default
method of this normalization procedure uses a trimmed mean of M-values (TMM) between
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each pair of samples, but can be changed by the users to Relative Log expression (RLE)
or upperquartile. Next, AskoR applies the Cox-Reid profile-adjusted likelihood method
of edgeR for estimating the dispersion then a generalized linear model (GLM) for testing
the differential expression, the latter is based on a "quasi likelihood F-test" qlf, but can be
changed to the likelihood Ratio Test LRT with the glm parameter.

2.4. Venn and Upset diagrams

For the automatic production of Venn and Upset diagrams with VennDiagram and
UpSetR R packages, we use two parameters indicating which gene-list has to be involved
in the graphs. The first parameter compaVD or upset_list (for Venn or Upset diagrams
respectively) allows to choose which contrasts will be included in the comparisons (multiple
graphs can be produced). The second parameter VD or upset_type allows to select for each
contrast the subset of DEGs to compare (up, down or both).

2.5. GO-term Enrichment

By default, for each gene list, the Gene-Ontology enrichment is evaluated using a
Fisher test adjusted by the Benjamini-Hochberg (BH) method with the weight01 algorithm
against the complete list of GO assigned genes given by the user. All statistical tests (fisher,
ks, t, globaltest, sum or ks.ties) and/or algorithms (classic, elim, weight, weight01, lea or
parentchild) supported by TopGO [29] can be selected with the parameters GO_stats and
GO_algo respectively.

2.6. Clustering

The clustering of expression profiles is handled with the coseq R package [22]. How-
ever, the methods can be chosen with the coseq_model parameter as well as the transfor-
mation with coseq_transformation and the range of cluster numbers to be evaluated for
identifying the best K value coseq_ClustersNb.

2.7. Graphics

The graphs allowing the representation of clusters and enrichments are produced
with the R package ggplot2, ComplexHeatmap, and circlize allowing the visualization of the
intersections of DEG lists between contrasts produced using the VennDiagram and UpSetR
R packages.

2.8. Production of tabular files for AskOmics

In a so-called "AskoTables" directory, AskoR produces files which could be imported
directly into AskOmics. Some are directly derived from the input file, describing 3 entities
: 1) Condition : a group of samples with corresponding characteristics (tissue, stress,
development stage, etc...); 2) Context : a group of conditions which are compared within a
contrast; 3) Contrast : the comparison of 2 contexts.

In addition, AskoR provides for each contrast a tabular file, with all the tested genes
in lines with the AskOmics compliant columns : Test_id (a unique id for a test), mea-
sured_in@Contrast (the name of the contrast), is@gene (the name of the gene), FC (fold-
change) and logFC, PValue and FDR (p-value and adjusted p-value of the test), Expression
and Significance. Furthermore AskoR supplies a summarized table including all the genes
(and annotation) and their significativity at each contrast.

3. Results

AskoR requires only a few tabular files including standard raw counts of reads for
each gene, descriptions of samples, including biological and technical replicates, and a list
of contrasts between the different treatments and conditions. The structure of the table
describing the contrasts is rather simple as it includes a line for each condition and each
contrast reported to a column containing "+" or "-" for the condition to be compared and
0 for the others. Additionally, the users can provide a gene ontology assignation file for
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performing the GO enrichment step, and a list of complementary annotations which will
be transferred to the final tabular files.

To expedite analysis and improve false discovery rate, genes with low CPM values
should be removed prior to performing the differential expression analysis, which would
be unlikely to be detected as differentially expressed anyhow. The user can adjust several
parameters, such as threshold_cpm and replicate_cpm, and visualize the results in density
graphs to determine whether the low expressed genes have been successfully removed.

From the matrix of CPM, AskoR produces Multi-dimensional Scaling (MDS) plot,
displaying the coordinates of the samples on 3 axes, a heatmap of the correlation between
the samples (with dendograms) and with their respective conditions encoded by a color,
and a correlogram (Fig. 1A). This result provides an overview of the samples and allows
for the identification of outliers or inconsistencies in biological or technical replicates.

The normalization and differential expression analyses are performed with the pop-
ular edgeR package [16], including the functions calcNormFactors for the normalization,
estimateGLMCommonDisp, estimateGLMTrendedDisp, estimateGLMTrendedDisp or estimateDisp
for the estimation of the dispersion and glmFit and glmLRT or glmQLFit, and glmQLFTest for
the DE tests with the Generalized Linear Models (GLM). With a set of default parameters
which can be changed by the users, such as the normalization and dispersion methods
(normal_method, glm_disp), GLM (glm) or multi-test correction (p_adj_method), the AskoR
pipeline performs the adequate functions.

For each contrast, a file is created to report the results of the tests in a format readable
by AskOmics to facilitate the integration of the results. It also compiles and summarizes all
the results of the tests for a batch of contrasts into a single tabular file. It generates as well
numerous graphical outputs such as volcano plots, mean-difference plots and heatmaps of
top list of the DEGs.

Venn and Upset diagrams allow users to identify common DEGs shared between
multiple contrasts. While Venn diagrams allow to compare up to 4 lists, Upset allows
users to make comparisons among more constrats (Fig. 1B). However, when making many
contrasts, a complete graph including all gene-lists may be unreadable or meaningless,
then with only two parameters (VD and compaVD or upset_list and upset_type) the user can
select precisely the lists of genes to be displayed in the graphs.

Figure 1. A. Correlogram plot generated by AskoR to describe sample correlations. Each cell
represents a pairwise comparison and each correlation coefficient is represented by an ellipse whose
‘diameter’, direction, and color depict the accordance for that pair of samples. Highly correlated
samples are depicted as thin blue ellipses, while poorly correlated samples are depicted as red ellipses
with wide diameters. B. Intersections of DEGs lists between contrasts. DEGs lists in each contrast
and their size are shown in the horizontal histograms. The lines connected by dots represent the
intersection between these lists. The vertical histograms represent the number of DEGs in each
intersection. Colors (green/red) represents UP- and DOWN- regulated DEGs.
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If gene ontology terms are provided, AskoR can perform enrichment analysis in lists
of DEGs annotated and produce a table (Table 1) with a statistical test from TopGO R
package [29] and dedicated figure (Fig. 2).

It is also often useful to group genes that show a similar expression in several condi-
tions (expression profile), to identify co-regulated genes and to characterize genes with no
function having similar expression to candidate genes. AskoR performs a clustering with
the Coseq R package [22] that uses two classification algorithms (kmeans, and gaussian
mixture) with respective transformations, tests for the best number of clusters (K), and
produces statistics and graphics helping to check the quality and robustness of the chosen
model. Additionally, AskoR outputs several graphs (Fig. 3) to display the expression
profiles for each contrast, and search for GO enrichment in each cluster.

Table 1. Gene-Ontology terms for a contrast, each GO term from the 3 categories (molecular function,
biological process or cellular component) is reported in the table. The Annotated column indicates
the number of genes assigned to the term in the complete gene set. The Significant column shows
the number of genes assigned to the term in the tested list while the Expected column gives the
expected value, the Ratio value corresponds to the Significant column divided by Expected column,
the statisticTest displays the adjusted p-value of the test, and GO_cat is the GO category of the term
("CC" for cellular component, "BP" for biological process, and "MF" for molecular function).

GO.ID Term Annotated Significant Expected statisticTest Ratio GO_cat

GO:0022627 cytosolic small ribosomal subunit 21 13 4.75 0.00012 2.73684210526316 CC
GO:0004812 aminoacyl-tRNA ligase activity 51 24 11.8 0.00014 2.03389830508475 MF
GO:0005840 ribosome 193 79 43.63 0.00016 1.81068072427229 CC
GO:0042273 ribosomal large subunit biogenesis 28 21 6.29 0.00017 3.33863275039746 BP
GO:0030687 preribosome, large subunit precursor 10 8 2.26 0.00019 3.53982300884956 CC
GO:0000460 maturation of 5.8S rRNA 10 8 2.25 0.00019 3.55555555555556 BP
GO:0005929 cilium 89 36 20.12 0.00024 1.78926441351889 CC

Figure 2. Plot of GO enrichment for one contrast. Each line displays a significant term grouped by
GO category, the position of the dot refers to the significance of the test and the size of the circle
corresponds to the number of observed genes in the tested list which are assigned to that terms.
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Figure 3. Gene clustering based on expression profiles. A. Heatmap of scaled expression. Each line
represents a condition and each column a gene. The color indicates the scaled expression. The genes
are grouped in clusters. The condition are ordered by the user or grouped by correlation (with a
dendogram). B. Boxplots of scaled expression by clusters

4. Discussion

AskoR is highly customizable, and includes many parameters with default values
modifiable according to the needs of the analysis. Thus, it is straightforward to run an
analysis with a single file and a set of data. The results of the analyses are then stored in
multiple files under a named directory. Then, any set of results obtained with a particular
set of parameters can be stored, compared and reproduced.

AskoR is working as a standalone library and no web interface has been developed
yet (with R Shiny for instance). Nevertheless, it can be run as a single script and easily mod-
ified directly on any laptop or server or integrate directly in workflows for an improved
reproducibility. Furthermore, the docker image of AskoR can be integrated directly as an
interactive environment in a Galaxy instance. As a result, with the help of the online docu-
mentation, it is straighforward to explore transcriptomics data and produce publishable
figures. Consequently, AskoR has already been used for various analysis [12,30–32].

Additionally, AskoR prepares output files following the AskOmics requirements.
Within this tool, complex and expressive queries can be generated via a graphical interface
in order to extract the most interesting genes by combining several lists of genes by a logical
operator (e.g. DEGs from one or more particular contrast or cluster). For instance, it is
possible to extract genes over-expressed in a condition at some selected time-points but or
under-expressed (or not differentially expressed) at other time points. Furthermore, DEGs
can be supplemented with other data such as genome locations, assignation to metabolic
networks, miRNA targets, or epigenomics landscapes to promote selection of candidate
genes.

AskoR is open-source available online at a git repository, where anyone can contribute,
push an issue or ask for a specific request. For example, we are adding functions to create
graphical representation combining the expression levels and the of a set of genes list
defined by a user.

Author Contributions: Conceptualization, S.D. and F.L.; software development S.A-C, K.G., S.M.
and F.L.; application, tests and validation, S.A-C, K.G. and S.R., deployment, A.B.
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