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Abstract: Alzheimer’s Disease (AD) is the most widespread neurodegenerative disease, affecting 

over 50 million people across the world. While its progression cannot be stopped, early and accurate 

diagnostic testing can drastically improve quality of life in patients. Currently, only qualitative 

means of testing are employed in the form of scoring performance on a battery of cognitive tests. 

The inherent disadvantage of this method is that the burden of an accurate diagnosis falls on the 

clinician’s competence. Quantitative methods like MRI scan assessment are inaccurate at best, due 

to the elusive nature of visually observable changes in the brain. In lieu of these disadvantages to 

extant methods of AD diagnosis, we have developed ADiag, a novel quantitative method to diag-

nose AD through graph theory and deep learning-based analysis of large graphs based on thickness 

differences between different structural regions of the cortex. ADiag is adept not only at differenti-

ating between controls and AD patients, but also at predicting progression of Mild Cognitive Im-

pairment (MCI) to clinical AD. 
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1. Introduction  

Alzheimer’s Disease (AD) is a progressive neurodegenerative disease affecting more 

than 50 million people worldwide [1]. Though AD is usually not the direct cause of death, 

it is causally linked to other terminal pathologies like pneumonia. The cause of AD is not 

precisely known, but the buildup of aggregations of misfolded proteins (beta-amyloid 

and tau proteins) in the hippocampus and the temporal lobe has been cited as a factor. 

These aggregations are neurotoxic and progressively kill cortical neurons; this process can 

be understood as a progressive decrease in cortical thickness. 

No treatments exist yet, but timely diagnosis can contribute to an improved quality 

of life for the patient. These diagnostic methods, however, are extremely qualitative in 

nature; one such test, and a correct diagnosis is solely based on the clinician’s competence 

and not on quantitative backing; this is the major cause of the high rate of misdiagnosis. 

In lieu of this, it is essential that efficient quantitative methods of AD diagnosis are devel-

oped. Quantitative AD testing is restricted to cerebral biopsy [2] and is not widely imple-

mented: being invasive, there is a high risk of infection, which can be debilitating for sen-

ior citizens. In fact, a conclusive diagnosis of AD is done only after the patient has passed 

away and an autopsy has been performed. Other non-invasive quantitative methods have 
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been developed but are still experimental; they rely almost exclusively on supervised 

learning and are thus inherently data hungry and inaccurate. 

Graph Neural Networks (GNNs) are a powerful tool to aid in AD diagnosis, simply 

because the brain can also be represented as a network graph, defined by distinct nodes 

(representing different structural and functional regions of the brain), and the edges, rep-

resenting neuronal connections between these regions of the brain. ADiag is thus a GNN 

model that leverages the graph representation of the brain to diagnose Alzheimer's Dis-

ease. 

2. Materials and Methods  

2.1. Data Acquisition  

Data used in this study was obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) Database. ADNI was launched in 2003 as a public-private partnership 

led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been 

to test whether serial magnetic resonance imaging (MRI), positron emission tomography 

(PET), other biological markers, and clinical and neuropsychological assessment can be 

combined to measure the progression of mild cognitive impairment (MCI) and early Alz-

heimer’s disease (AD). For up-to-date information, see www.adni-info.org. 

In 2011, Cuignet et al. (2011) [3] quantitatively compared the performance of various 

classification methods, resulting in comparable metrics. For the purpose of this study, 260 

T1-weighted cortical MRI scans were chosen as a subset of the 509 scans of Cuignet et al. 

(2011). These 260 scans were subdivided into three groups based on subject’s MMSE and 

CDR scores: Cognitively Normal (CN), Alzheimer’s Disease (AD), and Mild Cognitive 

Impairment (MCI). The MCI group was further divided into two groups, MCI conversion 

to AD (MCIc) and MCI non-conversion to AD (MCInc), both taken in a three-year period.  

Table 1. Criteria for Subdivision into CN, AD, MCI. 

Group CDR MMSE 

CN 0 24-30 

AD 0.5-1 

 

0-22 

 

 

MCI 0.5  18-24 

2.2. Cortical Thickness Extraction and Graph Creation 

MRI scans were registered to MNI stereotactic space, and then resampled to the Desi-

kan-Killiany atlas. The parcelled surface was then subject to cortical thickness extraction 

using Freesurfer [4] suite, with the recon-all and qcache flags applied. Each cortical surface 

consisted of approximately 290,000 discrete vertices. Thickness features were then passed 

through the VisualQC pipelines to ensure the absence of irregularities stemming from bias 

field and abnormal signal intensity regions. 

The thickness data extracted by FreeSurfer was then processed by the graph genera-

tion software Graynet [5]; here, differences in cortical thickness between functional re-

gions of the brain were used as parameters to define the weight of the different connec-

tions. Large differences in thickness were taken to define relatively weaker connections 

than those defined by smaller thickness differences. Obviously, the strength of these con-

nections was defined by the edge weight between connected nodes.  

These nodes were taken to be aggregations of vertices (defined by absolute cortical 

thickness values); the number of vertices incorporated into each node was inversely pro-

portional to the number of nodes in the graph, and thus the size of the graph. To preserve 

the detail and intricacies of the thickness disparities, we chose a relatively small number 

http://www.adni-info.org/
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of 250 vertices to be aggregated into each node. Furthermore, we also calculated distance 

between different nodes using Manhattan distance. The graph of each scan had exactly 

1162 nodes, and 6,74,541 edges between these nodes. 

 

 

(a) (b) 

  
(c) (d) 

Figure 1. Preprocessing stages of MRI scan: (a) Parcellation of cortical surface into cortical regions based on Desikan-

Killiany Atlas; (b) Thickness map of surface, where intensity of color equates to thicker surface; (c) Graph representation 

of cortical surface; (d) Close-up view - graph representation of right frontal lobe. 

2.3. Graph Neural Network Structure 

Our GNN deep-learning model consisted of three dense GraphSAGE [6] convolu-

tional layers that took the number of inputs, output and hidden channels as input param-

eters. Each of these layers performed inductive learning on the graphs by aggregating 

nodal information at each successive iteration, thereby simultaneously incorporating in-

formation from far reaches of the graph and increasing the amount of information availa-

ble to each node. The GraphSAGE layer has several advantages, of which two are salient: 

the inductive learning process allows for information-rich, aggregated representations of 

each node, and the neighborhood aggregation process allows for even unseen nodes to be 

included in the learning process. 

The processed graph outputted by the GraphSAGE layer then undergoes pooling in 

the DDP layer [7]; the goal of the pooling layer is to methodically reduce the coarsen the 

graph from 1162 nodes down to 18 nodes so that it can be easily classified. Each pooling 

layer reduced the number of nodes by approximately 75%, such that the graph was coars-

ened down to 18 nodes before being fed to the fully connected layers for binary classifica-

tion. 
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Scheme 1. Layout of Neural Network used in ADiag. 

3. Results  

With respect to AD vs CN, after running the model over 150 epochs, we observed a 

peak validation accuracy of 80.1% and a training loss of 0.71. To improve accuracy and 

decrease training loss, we applied batch normalization, k-fold cross-validation, and ap-

plied learning rate optimization. This increased accuracy up to 83.44%, and decreased loss 

to 0.695. Specificity and sensitivity values were also extremely high, with 85.7% specificity 

and 70.4% specificity calculated. These accuracy and loss values, however, are preliminary 

and will almost definitely be drastically improved with increased training data.  

In classifying MCIc vs MCInc, we observed a peak validation accuracy of 75.38% and 

a slightly higher loss value of 0.76, even after optimization. We also observed a sensitivity 

of 68.6% and a specificity of 80.2%.  

Analysis of connectivity patterns revealed significantly diminished interlobar con-

nections in MCI patients, with MCIc patients showing diminished right temporal lobe 

(RTL) edge weights compared to MCInc. Compared to NC, AD patients had significantly 

weaker interlobar and intralobar edges, with the most stark difference observable in RTL 

edges .  

 

Figure 2. Side-by-side comparison of top-view AD graph (left) and CN graph (right), with visually 

observable edge-weight disparities circled in purple. Apart from interlobar edge-weight discrep-

ancies, the RTL edge weight is observed to be significantly weaker in AD graph versus CN graph. 
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Figure 3. Side-by-side comparison of accuracy values for AD v CN (a) and MCIc v MCInc (b); Side-by-side comparison of 

loss values for AD v CN (c) and MCIc v MCInc (d). 
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