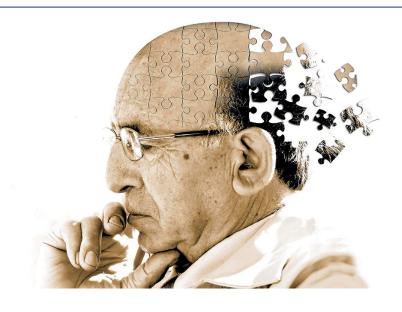
ADiag: Graph Neural Network Based Diagnosis of Alzheimer's Disease

Project ID: TMED004

Vishnu Ram Sampathkumar

Class 12 National Public School, Indiranagar Bengaluru, Karnataka INDIA



Introduction - Problem Statement

1. Alzheimer's Disease (AD)

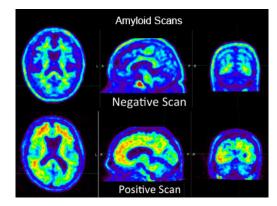
- AD is a progressive neurodegenerative disease and the most common form of dementia affects more than 50 million people worldwide¹
- No cures for AD, only treatment of symptoms
- In advanced stages, complications from severe loss of brain function such as malnutrition, dehydration or infection— result in death
- Global economic burden: US\$ 800B+ spent on medical + social care for AD and related dementia¹

2. Mild Cognitive Impairment (MCI)

- Measurable decline in cognitive abilities beyond the expected decline of normal aging
- Person with MCI is at an increased risk of developing AD or any other form of dementia
- · Sometimes, MCI reverts to normal cognition or remains stable
- Current QUALITATIVE clinical diagnosis of AD through MMSE and CDR Tests
 - Highly variable as it depends on clinician's competence
 - >25% chance of misdiagnosis
- Current QUANTITATIVE Diagnosis PET Imaging
 - · Low specificity
 - · Prohibitively expensive

Impact of high misdiagnosis rates

- Quality of life affected as symptom relief therapy not given
- · Promising clinical trials showing discouraging results as patients wrongly classified as AD



Amyloid PET Imaging Source: UCSF Medicine

Introduction - My Goal

- Provide a novel tool ADiag to help clinicians so they can quickly, quantitatively and accurately diagnose AD and MCI with early signs of cortical atrophy patterns
- Use Graph Theory and Deep Learning Architecture to build this diagnostic model
- Achieve **accuracies > 80%** in classifying brain images quantitatively as:
 - AD Positive
 - AD Negative
 - MCI Conversion to AD in 3 years (MCIc)
 - MCI Non-Conversion to AD in 3 years (MCInc)
- Use cortical thickness as imaging biomarker
 - An excellent biomarker for diagnosis with a high specificity as AD/MCI pathology shows distinct regional pattern of cortical atrophy

Methodology: Data Acquisition and Pre-Processing

MR Image Acquisition

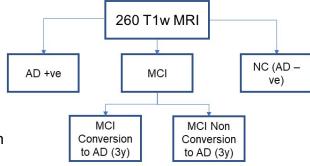
- Dataset: 75 NC (Controls), 68 MCIc, 45 MCInc and 72 AD T1w image scans sourced from Alzheimer's Disease Neuroimaging Initiative (ADNI) database after receiving prior permission through NIH grant application
- · Age group of subjects is 42 to 95 years

Conditions for selection

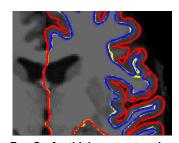
 To simulate biological realism, few subjects with conditions such as alcoholism and depression were selected

Group	MMSE	CDR
MCI	20-26	0.5
AD	<24	>0.5
NC	24-30	0

- Three year time period considered to verify whether MCI converts to AD
- Thickness features extracted from graphs via FreeSurfer software
- · Graynet software used to model thickness features into Graphs (series of nodes and edges)
 - Edge weights based on thickness differences between connected nodes
 - Each scan yielded 1162 nodes and 674,541 edges

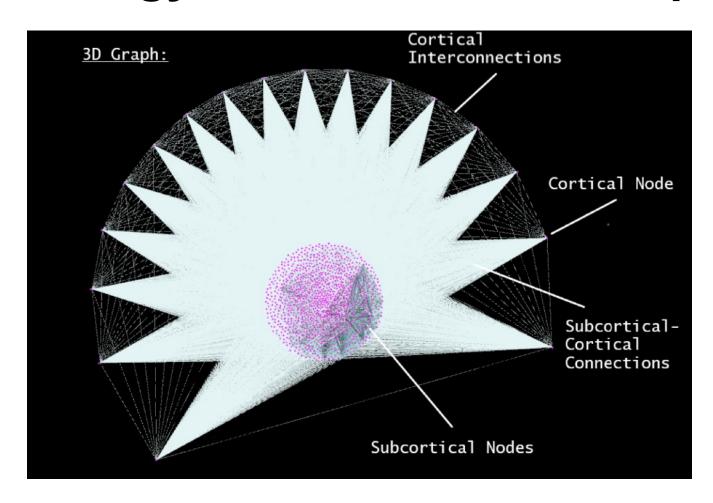


Dataset Composition



FreeSurfer thickness extraction

Methodology: Overview of 3D Graph



Methodology: Deploying Graph Neural

Network

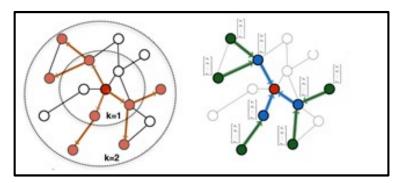
GraphSAGE layer

$$\begin{aligned} \mathbf{h}_{\mathcal{N}(v)}^k &\leftarrow \text{AGGREGATE}_k(\{\mathbf{h}_u^{k-1}, \forall u \in \mathcal{N}(v)\}) \\ \mathbf{h}_v^k &\leftarrow \sigma\left(\mathbf{W}^k \cdot \text{CONCAT}(\mathbf{h}_v^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^k)\right) \end{aligned}$$

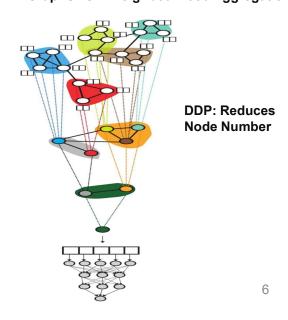
- Responsible for aggregating information from all nodes in a graph's neighbourhood
- Each node is simultaneously enriched with information from neighbourhood
- Extremely relevant for brain graphs → neighbourhoods in a graph can be compared to lobes of a brain

Dense Differentiable Pooling

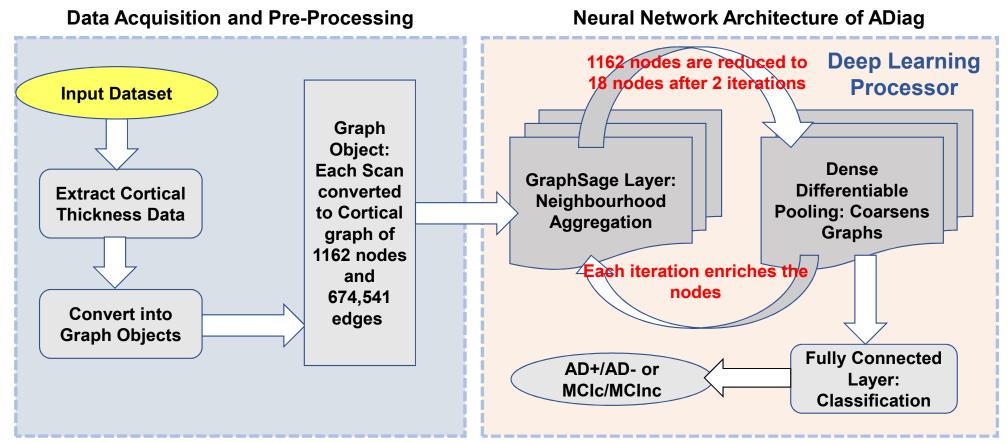
- Responsible for coarsening/reducing size of graph
- Generates assignment tensor which decides how many nodes to cluster together based on GraphSAGE output
- · Extremely relevant for whole graph classification as opposed to node classification



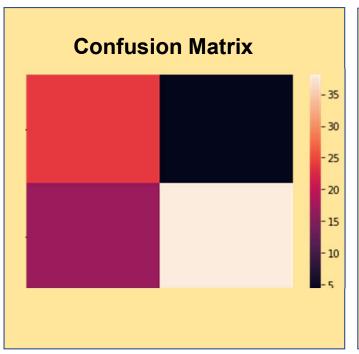
GraphSAGE: Neighbourhood Aggregation

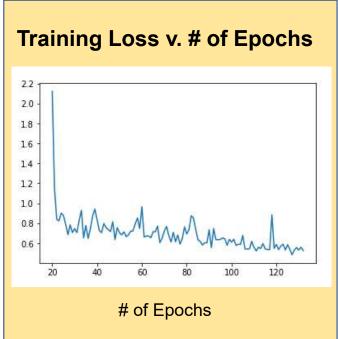


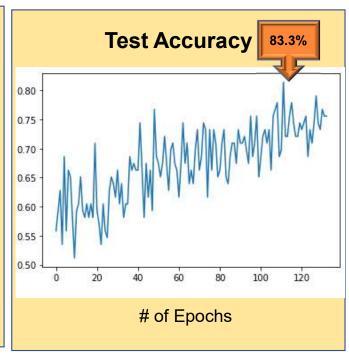
ADiag Design and Methodology



Data Analysis and Results – AD v. NC

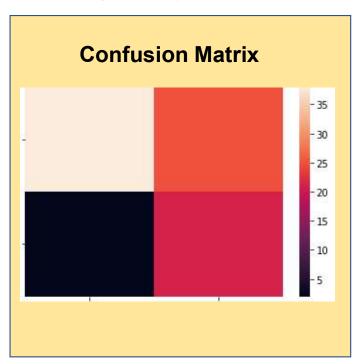


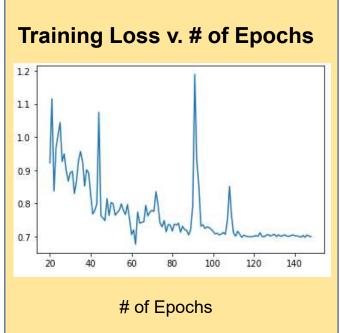


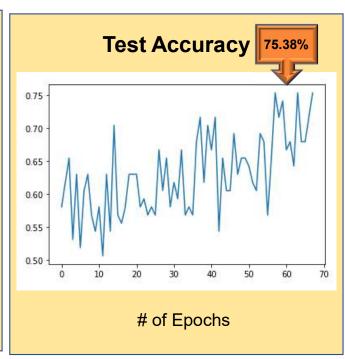


- Accuracy is 83.3%
- Training optimized with Learning Rate Optimization, K-Fold Cross Validation
- Specificity: 85.7%; Sensitivity: 70.4%

Data Analysis and Results – MCIc v. MCInc







- Accuracy is 75.38%
- Training optimized with Learning Rate Optimization, K-Fold Cross Validation
- Specificity: 80.2%; Sensitivity: 68.6%

Discussion

Category	ADiag: GNN	CDR and MMSE	ThickNet Graph Learning	PET Imaging
Accuracy (AD v. NC)	83.3% from 147 samples ** Estimated 95 % accuracy with 250 scans	Less than 75%	89% from 509 samples	N/A
Accuracy (MClc v. MClnc)	75.38%	N/A	64.5%	N/A
Feasibility	High: based on widespread T1w MRI	High: based on written/oral exam	High: based on widespread T1w MRI	Moderate: dependant on sparse PET scan
Expense	Low: ~ \$700	Extremely Low	Low: ~ \$700	High: ~ \$6000
Effect of Data	Accuracy Scales with Data	N/A	Accuracy does not scale with data	N/A

- I attempted to use gene expression as a secondary variable along with cortical thickness. Using a PCA map, I found a low correlation of gene expression values with the patients' condition and hence, abandoned it as a secondary variable.
- Initially the dataset was from the Open Access Series of Imaging Studies (OASIS-3) database which had AD and NC scans only. When I expanded the project scope to include MCI patients' data, I had to source the data from the ADNI database.

Conclusions

- ADiag is a novel, quantitative, low-cost diagnostic tool that diagnoses AD and MCI
- Clinicians can use ADiag to diagnose AD with higher certainty than qualitative diagnosis (83% v 75% or less)
- Clinicians can predict with 75.4% accuracy whether the MCI patient can progress to AD in three years
 - I have achieved my goal of creating such a model with an accuracy of 83.3% and 75.38% for AD v. NC and MCIc v.
 MCInc, respectively
 - I have also proved my hypothesis that cortical thickness is a powerful biomarker to diagnose Alzheimer's Disease
 - ADiag is one of two GNN-based models for AD and MCI diagnostics: paper at https://arxiv.org/pdf/2101.02870.pdf
- Future goals and objectives
 - Doubling dataset size: this will increase accuracy to approximately 95%
 - Validation of ADiag model at National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru; incorporate
 Indian dataset
 - Include PET data to access uptake features

References

- [1] E. Nichols, C. E. Szoeke, S. E. Vollset, N. Abbasi, F. Abd-Allah, J. Abdela, M. T. E. Aichour, R. O. Akinyemi, F. Alahdab, S. W. Asgedom et al., "Global, regional, and national burden of alzheimer's disease and other dementias, 1990–2016: a systematic analysis for the global burden of disease study 2016," The Lancet Neurology, vol. 18, no. 1, pp. 88–106, 2019.
- [2] S. Balsis, J. F. Benge, D. A. Lowe, L. Geraci, and R. S. Doody, "How do scores on the adas-cog, mmse, and cdr-sob correspond?" The Clinical Neuropsychologist, vol. 29, no. 7, pp. 1002–1009, 2015.
- [3] J. Warren, J. Schott, N. Fox, M. Thom, T. Revesz, J. Holton, F. Scaravilli, D. Thomas, G. Plant, P. Rudge et al., "Brain biopsy in dementia," Brain, vol. 128, no. 9, pp. 2016–2025, 2005.
- [4] P. J. LaMontagne, T. L. Benzinger, J. C. Morris, S. Keefe, R. Hornbeck, C. Xiong, E. Grant, J. Hassenstab, K. Moulder, A. Vlassenko et al., "Oasis-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and alzheimer disease," medRxiv, 2019.
- [5] O. Querbes, F. Aubry, J. Pariente, J.-A. Lotterie, J.-F. Démonet, V. Duret, M. Puel, I. Berry, J.-C. Fort, P. Celsis et al., "Early diagnosis of alzheimer's disease using cortical thickness: impact of cognitive reserve," *Brain*, vol. 132, no. 8, pp. 2036–2047, 2009.
- [6] B. Fischl, "Freesurfer," Neuroimage, vol. 62, no. 2, pp. 774-781, 2012.
- [7] P. R. Raamana and S. C. Strother, "Graynet: single-subject morphometric networks for neuroscience connectivity applications," Journal of Open Source Software, vol. 3, no. 30, p. 924, 2018.
- [8] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., "Pytorch: An imperative style, high-performance deep learning library," in Advances in neural information processing systems, 2019, pp. 8026–8037.
- [9] W. Hamilton, Z. Ying, and J. Leskovec, "Inductive representation learning on large graphs," in Advances in neural information processing systems, 2017, pp. 1024–1034.
- [10] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec, "Hierarchical graph representation learning with differentiable pooling," in Advances in neural information processing systems, 2018, pp. 4800–4810.