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Abstract: Objective: The identification of dose-response effects of transcranial direct current1

stimulation (tDCS) on postural control after stroke has highlighted this strategy as promising2

for post-stroke rehabilitation. Nonetheless, spatial-temporal dependence data have not been3

investigated using entropy analysis. Thus, we performed a nonlinear time series analysis of4

ground reaction force during and after the application of the high-definition transcranial direct5

current stimulation (HD-tDCS), over the right temporo-parietal junction (TPJ). Materials and6

Methods: We conducted a randomized, double-blind, placebo-controlled, crossover clinical trial.7

Twenty-one healthy young adults received the HD-tDCS and sham protocols. We evaluated8

the exchanging information (causal direction) between both force plates, using the summarized9

time series of transfer entropy, and compared the dose-response across the healthy subjects by10

a generalized linear mixed model (GLMM). Results: We found significant variation during the11

dynamic information flow (p<0.001) among the dominant bodyside. Specifically, all participants12

were right-handed, and a greater force transfer was observed from the right- to the left-side13

during the experiment. We observed a causal relationship in the information flow (equilibrium14

force transfer) from right to left and a decrease in entropy over time. Conclusions: HD-tDCS15

intervention induced a dynamic influence over time on postural control. Right-TPJ stimulation16

using HD-tDCS can induce an asymmetry of body weight distribution, leaning to the contralateral17

side of the stimulation, and thus a plausible post-stroke treatment.18

Keywords: high-definition transcranial direct current stimulation; postural control; entropy;19

nonlinear time series.20

1. Introduction21

Stroke is a cerebrovascular disease being of the second leading cause of death and22

disability worldwide [1]. About 30-50% of patients become dependent in activities23

of daily living (ADL) [2]. The postural imbalance leads to functional deficits in this24

population. It may occur due to changes in mechanical components such as muscle25

weakness, limitation of joint movement, changes in muscle tone as well as sensory26

damage [3]. The visual verticality perception (VV) disorder, the incapacity to judge the27

orientation of the body or environment in relation to Earth vertical within normal limits,28
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is commonly observed after stroke and associated with poor balance [4] due to a weight29

asymmetry towards the same side of the VV tilt [5–8].30

Lesions of the temporoparietal juction (TPJ), a hub area for multisensory integration,31

can cause VV disorder and postural imbalance [9]. NIBS techniques, such as conven-32

tional and high-definition transcranial direct current stimulation (HD-tDCS) are current33

therapeutic resources with potential modulation on the pathophysiology and behavior34

of brain mechanisms [10]. Recently we verified the effects of conventional noninvasive35

transcranial stimulation (tDCS) [11] and HD-tDCS [12] applied over the TPJ in both36

healthy subjects and patients after stroke.37

Clinical findings observed in patients after stroke in VV and weight-bearing asym-38

metry (WBA) [4,12,13] were reproduced in healthy individuals after using our stim-39

ulation protocol. We found action dependent on the cathode center condition with40

induction of asymmetry in the discharge of body weight towards the side of brain41

stimulation [12]. However, we did not demonstrate to be dependent on the intensity of42

the electrical current. Other studies evaluated electroencephalography (EEG) after our43

HD-tDCS protocol in healthy subjects and suggested entropy (nonlinear analysis) as a44

robust alternative for data analysis complementing linear [14,15].45

We hypothesized that the HD-tDCS would induce a sequence of events on postural46

control demonstrated by an influence in the discharge of weight. Thus, we analyzed the47

ground reaction force in each platform through the flow of information using transfer48

entropy.49

2. The Data50

This study was conducted according to the Helsinki Declaration requirements for51

human investigation, and was approved by the local ethics committee. All participants52

provided written informed consent. This article followed the guidelines of the Checklist53

of Information to include when reporting a randomized trial followed the Consolidated54

Standards of Reporting Trials (CONSORT) for randomized trials.55

2.1. Participants56

The study included a distinct sample population blinded to the HD-tDCS approach57

for assessing ground reaction force. The study candidates were healthy subjects aged58

20 to 28 years, male and female, right-handed, non-smokers, with no evidence of brain,59

vestibular or orthopedic dysfunction, with normal or corrected vision. To ensure the60

absence of vestibular deficits, was accomplished oculomotor tests, the head shake and61

head thrust test. Inclusion and evaluation period of study participants was 10 months.62

2.2. Intervention63

We used the HD-tDCS protocol organized in the 3 x 1 standard. The assembly was64

composed of a central electrode on the right cerebral hemisphere TPJ and 3 peripheral65

electrodes located at EEG coordinates P4, C4 and T8. We used a Soterix HD-tDCS device66

(Soterix Medical®, NY-USA). During and after the application of the electric current we67

assessed the body movement kinetics measured by two force plates (Bertec 4060-NC,68

Columbus, OH, USA) in the static orthostatic posture of each individual.69

2.3. Outcome Measure70

Each volunteer underwent 3 different randomized HD-tDCS conditions (cathode-71

central, anode-central and sham) on 3 different days. Each HD-tDCS condition was72

applied in a sequence of 3 stimulation intensities (1, 2 and 3 mA) repeated 3 times. Each73

stimulation intensity was conducted for 2 minutes with rest interval of 5 minutes. The74

intervention of this study followed the stimulation protocol previously validated and75

published by our group [12]. Detailed analysis of the stimulation protocol as well as dose76

calculation for each stimulation session, HD-tDCS computational modeling, induced77
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montage with the cathodal polarity and intensity of 2mA promoted a greater effect on148

the postural control. Here, the intensity and the polarity-dependent effects did not show149

a statistical difference that can be related to the short time of stimulation.150

Future studies are necessary to explore random effects related to personal char-151

acteristics to promote a broader knowledge involving causality on dynamic entropy152

data.153
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