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Abstract: In this study, a methodological procedure combining a technique of 

meteorological normalization, based on a random forest algorithm, with trend analysis 

and the change points detections in air quality time series is developed to analyze changes 

in pollutant concentrations levels. Data of air pollutants and meteorological parameters, 

collected over the period 2013-2019 in a rural area affected by anthropic sources of air 

pollutants, are used to test the procedure. The results appear to be promising in revealing, 

in a robust way, changes in pollutant levels not clearly observable in the original data.  

Keywords: air pollution; machine learning; meteorological normalization, trend analysis, 

change-points detection. 

 

1. Introduction 

It is widely documented that air pollution is a leading cause of human 

morbidity and mortality globally [1]. According to the World Health 

Organization WHO [2], ambient air pollution accounts for an estimated 4.2 

million premature deaths per year due to stroke, heart disease, lung cancer, 

acute and chronic respiratory diseases and 91% of the world’s population live in 

places where air pollution levels exceed WHO Air Quality Guidelines limits [3]. 

In the European context, Italy presents several critical issues in terms of high-

pollution areas [4], prompting the European Commission to call Italy to comply 

with the requirements of Directive 2008/50/EC on ambient air quality and 

cleaner air for Europe [5] with regard to particulate matter [6].  

To design effective and well targeted strategies aimed at preventing or 

reducing health damages associated with the exposure to the atmospheric 

pollution, accurate information on the reals levels and on the trends of pollutants 

concentrations are required. To this purpose, the well known confounding 

effects of meteorology on the observed pollutants concentrations, occurring over 

multiple scales in time and space, must be considered [7], [8], [9]. Among the 

techniques accounting for changes over time in the air quality time series due to 

meteorology, referred as “meteorological normalization techniques”, a new 

approach based on machine learning (ML) predictive algorithms has recently 

emerged [10], [11], which basically reduces air quality time series variability 

with statistical modelling. Once the confounding weather effects have been 

removed, further and more robust statistical evaluations can be carried out in 

the resulting normalised time series. For example, the trend patterns analysis, 

(i.e. concentration changes over a period of time [12]), and the detection of 
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change points (i.e. unexpected, structural, changes in time series data properties, 

such as the mean or variance [13]), can be investigated in a more reliable way.  

Aims of the work is to develop a methodological procedure to account for 

the confounding effects of weather variability in air quality time series 

concentrations and to more accurately explain the variability in the measured 

pollutant concentrations. 

To this end, we developed a three-stage methodology. First, the effects of 

local weather in the air quality time series were removed using a technique of 

meteorological-normalization, based on a random forest (RF) ML algorithm. 

Secondly, trend analysis and change points detection were carried out to assess 

changes in the normalized signal. Finally, results obtained by the first two stages 

were jointly examined with the publicly available metadata to formulate some 

hypothesis on the potential link between the observed pollutant concentrations 

and the anthropic sources existing in the area. This procedure was applied on a 

data set comprising daily averaged data of air pollutants concentrations and 

meteorological parameters as well as temporal variables. Data were collected, 

over the 2013-2019 period, in a semi-rural area of Southern Italy interested by an 

anthropic source of air pollutants potentially influencing air quality. The 

obtained results appear to be promising in producing a reliable estimate of 

actual changes in the pollutant concentrations time series for use in air pollution 

exposure assessment studies. 

2. Materials and Methods 

2.1. Study area 

The study area is the Agri Valley, located in the South-West part of the 

Basilicata Region (Southern Italy) (Figure 1); more details on the examined area 

can be found in [14]. The valley is characterized by the presence of the largest 

on-shore western European reservoir of crude oil and gas and of an oil pre-

treatment plant (identified as Centro Olio Val d’Agri – hereafter COVA) in a 

populated area. The plant produces conveyed, diffuse and fugitive emissions of 

gases and particulate, which can affect the air quality and potentially pose a 

health risks for the population living in the area. Furthermore, the industrial 

processes taking place in the plant involve dangerous substances (toxics and 

flammables) for man and environment. An air quality control network, 

consisting of five monitoring stations, is operating in the area, managed by the 

Environmental Protection Agency of the Basilicata Region (ARPAB). For the 

purpose of this work data were obtained from the monitoring station closest to 

the COVA plant, named Viggiano (VZI, 40°18’50’’N, 15°54’16’’E, 603 m a.s.l.), 

categorized as an industrial station in a rural area. It is located at about 350 m 

from the industrial site and about 1000 m from a national road (SS598) 

characterized by a moderate volume of traffic produced by cars and heavy 

vehicles. 



 

Figure 1. Map of the study area: the VZI monitoring site, the COVA plant, the national 

road SS598 and the wind rose based on the hourly data at the VZI station over the study 

period (2013-2019).  

2.2. Observational dataset 

Four gaseous pollutants, namely nitrogen oxides (NOx), sulfur dioxide 

(SO2), carbon oxide (CO) and hydrogen sulfide (H2S) were selected for the 

analysis as proxies of anthropic sources existing in the area. For these pollutants, 

a strong evidence of respiratory and cardiovascular health effects is documented 

[15], [16]. Hourly data of NOx, SO2, CO, H2S and of several meteorological 

variables (respectively: temperature (T), atmospheric pressure (P), relative 

humidity (RH), wind direction (wd) and wind speed (ws)), were downloaded 

from the official website of ARPAB [17] and combined to form the whole data 

set used. Overall, a data set consisting of more than 356000 observations 

covering the 2013-2019 period was set up. The time series of all predictors 

considered respected the required 75% proportion of valid data. Subsequently, 

the data were daily averaged and a set of other time-based variables was added 

to create the final data set for the RF models development.  In particular, the day 

of the week, the Julian day (number of days since 1 January, ‘Jday’) and the date 

Unix of the observations (number of seconds since 1 January 1970, ‘trend’) were 

included in the model development as proxies for local traffic sources and to 

account for seasonal and long-term variability, respectively.  

2.3. Methodological approach  

The methodological approach to assess changes in pollutant concentrations 

levels, adopted in the present study, consists of the following main steps: i) for 

each pollutant a RF model was developed and, once its performances and 

interpretability have been  analyzed to ensure its reliability, the meteorological 

normalization of the concentrations predicted by the RF model was carried out. 

ii) After that, the estimation of the main change-points time location in the 

normalized signal and the trend analysis were performed. iii) Combining the 

results of the previous stages with the available metadata, some hypothesis on 

the potential link between the normalised time series and specific events were 

formulated. 



2.3. 1 Meteorological normalization procedure 

The strategy for the meteorological normalization follows the work 

described in [18], as subsequently implemented in [19] and [20], and was based 

on two steps: first, a RF model was built and validated for each of the pollutants 

analyzed in the present study; second, the meteorological normalization of the 

predicted pollutants concentrations was carried out.  

In the development of each RF model (theoretical insight can be found [21]) 

the pollutant included in the dataset represented the dependent variable (or 

target) while meteorological and time-dependent features represented the 

explanatory variables (or predictors). The 80% of the whole observed dataset 

randomly sampled (training dataset) was used to build up the prediction model. 

The remaining 20% (testing dataset) was used to test the prediction accuracy of 

the model. The best model for each pollutant was built on the training dataset 

using the best combination of the tuning parameters selected on the basis of the 

R2 metric as evaluated on the testing dataset. The tuning parameters used in the 

work are the number of predictors randomly sampled to determine each split 

(mtry) and the minimum number of observations in a terminal node (min node 

size). The number of trees (n trees) was set at 1000. The RF model have an 

inherent procedure producing the relative importance of predictors that is, the 

measure of the impact of each feature on the accuracy of the model. Thus, the 

relative importance resulting from the developed models was analyzed to 

identify the most important predictors. The performances of the selected optimal 

RF model were fully assessed by comparing predicted and observed pollutants 

concentrations values using a set of statistical indicators [22] evaluated on the 

testing dataset (see Annex 1 for the relevant equations).  

Once established that the RF model explained an adequate amount of 

variance in the predicted air quality variable, it was used to predict the pollutant 

concentrations resampling only the meteorological explanatory variables from 

the whole study period without replacement and randomly allocating them to a 

dependent variable observation. The advantage of this procedure is that the 

normalization process involves only the weather conditions but not the seasonal 

or weekly variations, so that the resulting normalized series is more closely 

related to emissions changes rather than changes due to meteorological effects. 

This procedure was repeated a number of times (300), then all the predictions 

were aggregated using the arithmetic mean to obtain the meteorological 

normalized concentration.  

2.3. 3 Trend and structural change analysis 

The goal of determine if there is a trend in the normalized concentrations 

over time was achieved using the Theil-Sen regression technique, which 

calculates the median slope of all possible slopes that may occur between the 

data points  [23]. In our calculations, the trends were based on monthly averages, 

and they were adjusted for seasonal variations, as these can have a significant 

effect on monthly data. As far as the trend analysis is concerned, the unadjusted 

trends we estimated are the product of both emission and meteorological 

changes, while the weather-adjusted trends remove the influence of weather 

changes on air quality. Consequently, the difference between the unadjusted and 

weather-adjusted trends reflects the impact of meteorological changes or 

weather penalties. 

For a more in-depth analysis of the trend so achieved, an investigation 

about the structural changes in the normalised time series was carried out [24].  

In the present study, we adopted the Wild Binary Segmentation (wbs) change 

point detection method [25] to detect the number and potential locations of 

change points with no prior assumptions. 



2.3. 4 Metadata analysis 

Finally, an attempt was made to acquire the available appropriate metadata 

allowing to properly interpreting the results. Data concerning plant operation, 

the timing of significant events related to the plant activities and the traffic flows 

in the Agri Valley were examined. The former were downloaded from official 

sources (i.e. the websites of the company that manages the plant) [26], while the 

traffic flows of heavy and light vehicles concerning the national road SS 598 were 

provided by the Azienda Nazionale Autonoma delle Strade (ANAS) [27].  

All data loading, processing, analysis, statistical modelling and 

visualization were performed in the R version 4.1.0 (R Foundation for Statistical 

Computing, Vienna, Austria).  It was mainly used the Openair package for air 

quality and trend analysis [28], the rmweather package [11] [18] for the 

meteorological normalisation, with the underlying ranger package [29] and 

tuneRanger package [30] for the development and  tuning  of the RF model and 

the wbs package [31] for change points analysis. 

3. Results and discussion 

3.1. Statistical analysis 

The descriptive statistics per year and pollutant is reported in Table 1.  

Table 1. Statistical summary of hourly data of NOx, SO2, CO, H2S registered at the VZI 

monitoring station from January 2013 to December 2019. Mean concentration in bold and, 

in rounded brackets, the min and maximum values. 

Year NOx μg/m3 SO2 μg/m3 CO mg/m3 H2S μg/m3 

2013 
14.98 

(0.00-118.29) 

 5.63 

(0.50-350.90) 

0.338  

(0.00-1.10) 

 2.18 

(0.28-241.61) 

2014 
 20.34 

(0.75-143.07) 

3.28 

(0.00-195.20)  

0.370 

(0.00-1.90) 

3.58 

(0.69-43.85) 

2015 
20.15 

(0.00-186.07) 

7.00 

(0.00-247.10) 

0.332 

(0.00-1.30) 

2.86 

(0.28-219.27) 

2016 
16.84 

(0.00-133.44) 

6.11 

(0.03-175.80) 

0.424 

(0.05-1.64) 

2.96 

(0.30-272.35) 

2017 
16.35 

(2.02-117.05) 

6.08 

(0.38-378.92) 

0.393 

(0.00-2.11) 

3.08 

(0.54-75.61) 

2018 
13.03 

(0.19-122.50) 

6.10 

(0.09-281.03) 

0.381 

(0.00-1.44) 

3.72 

(0.08-62.56) 

2019 
14.66 

(0.26-105.57) 

3.60 

(0.11-277.95) 

0.377 

(0.00-2.23) 

3.01 

(0.29-76.19) 

All years 
16.63 

(0.00-186.06) 

5.41 

(0.00-378.92) 

0.374 

(0.00-2.23) 

3.06 

(0.08-272.35) 

 

For regulated pollutants, time series analysis showed a general compliance 

with the limits set for by the existing national [32] and European legislation [5]. 
It is worth noting that, for the sole Agri Valley, a regional law [33] identifies limit 

values more stringent than those in force at national level for SO2 and H2S that 

are considered proxies of local hydrocarbon emissive processes. This law sets at 

280 μg/m3 and 100 μg/m3 the hourly and daily limit values for the protection of 

human health for SO2, and 32 μg/m3 the daily limit for H2S. The hourly limit 

value for SO2 rarely exceeded these limits and each time in different years. As 

far as the climate is concerned, the cold and rainy winters as well as cool 

summers with frequent rainfall [34], typically registered in the area, define an 

area at sub-continental climate. Based on the analysis of wind data, the mean 



value of ws was 1.8 ms-1, with the higher values generally measured during 

daytime. The wind rose, superimposed on the map in Figure 1, showed a 

prevailing wind direction from the SW to NW sector, over the period ranging 

between January 2013 and December 2019.  

3.2. RF models development and performances 

For each examined pollutant, the RF model, trained with the selection of the 

tuning parameters listed in Table 2, took the form shown by equation 1: 

𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡 ~𝑟𝑓(𝑇, 𝐻, 𝑤𝑠, 𝑤𝑑, 𝑃, 𝐽𝑑𝑎𝑦, 𝑤𝑒𝑒𝑘𝑑𝑎𝑦, 𝑡𝑟𝑒𝑛𝑑), (1) 
 

 

where rf is the function implementing the random forest algorithm in the R 

software environment.  

Table 2. RF model tuning parameters for each of the selected pollutant. 

pollutant  mtry min nod size n trees 

NOX 4 2 1000 

SO2 4 6 1000 

CO 7 2 1000 

H2S 5 4 1000 

 

The RF models performances were evaluated through the statistical 

indicators, whose resulting values were summarized in Table 3. 

Table 3. Statistical indicators of RF model performances for the testing data set.  Legend: 

R2 = coefficient of determination, MBE = mean bias error, MAE = mean absolute error, 

RMSE = root men square error and IoA = index of agreement. 

pollutant R2 MBE [µg/m3] MAE [µg/m3] RMSE [µg/m3] IoA 

NOX 0.723 0.380 3.700 5.406 0.723 

SO2 0.458 0.177 1.519 3.201 0.726 

CO 0.704 0.004 0.057 0.077 0.757 

H2S 0.683 0.069 0.366 0.700 0.806 

 

The R2 values show that the RF models can explain about the 70% of the 

total NOx, CO and H2S variability, while the model showed a moderate 

explanatory ability for SO2 (R2 values of 0.46). 

The relative importance of the selected predictors for the examined 

pollutants are presented in Figure 2.  

The overall contribute of the top four predictors explained over 85% of the 

variance for NO2 and SO2, and over 90% of the variance for CO and H2S. For SO2, 

CO and H2S, the temporal variables, i.e. trend and Jday, were the most important 

predictors, indicating in the seasonality and long-term trend the strongest 

driving features.  
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Figure 2. Relative importance of predictors for each of the selected pollutants. 

The most important contribute to NOx variability, instead, was due to the 

wind direction, closely followed by trend, and to a lesser extent by ws and Jday. 

It is worth looking more closely to the dependence of NOx from wd. The 

bivariate polar plot (Figure 3a) confirmed the strong directionality of NOx 

concentrations associated to winds from WSW, that is in the direction of both 

several of the COVA plant conveyed emissive sources and the SS598 national 

road. The hypothesis of a traffic contribution to NOx was supported by the 

analysis of the daily and weekly NOx pattern (Figure 3 b and c). The former tends 

to be significantly bimodal (higher concentrations in the early morning and late 

afternoon coinciding with the commuting hours). The latter shows a clear 

decrease of NOx concentrations on Saturday and Sunday when traffic is usually 

lower.  Both these patterns were also confirmed by the analysis of the metadata 

concerning the traffic flows of cars and heavy vehicles for the national road 

SS598 provided by ANAS for the year 2019 (Figure 3d). 



  
(a) (b) 

  
(c) (d) 

Figure 3. Polar plot (a), daily (b) and weekly (c) profiles of hourly NOx concentrations. 

Also shown on the plots b) and c) is the 95 % confidence interval in the mean.  d) Average 

hourly trend of traffic flows of the national road SS598 in 2019. 

3.3. Meteorological normalized air pollutants time series 

Daily concentrations of the observed and normalized data for NOx, SO2, CO 

and H2S are shown in Figure 3.  Also shown in the figure is a blue solid line 

representing the line joining the wbs change-points. As result of the 

meteorological normalization process, clear differences can be seen between the 

observed and normalized concentrations with the latter being a much smoother 

data series. Trend in the normalized pollutants concentrations was less volatile 

and noisy compared to the observed values and showed the extent to which 

changes in emissions influence the pollution level measured at the examined 

site. Moreover, number and location of change points identified by the wbs 

methods appears to detect the main structural changes in the normalized time 

series. Linking these structural changes with specific events through the 

available metadata should allow formulating hypotheses about what originated 

them. It is worth dwelling on two specific events corresponding to the periods 

represented by the grey areas in the Figure 4. By means of the available metadata 

at [26], it is known that the first corresponds to a plant shutdown, from April to 

August 2016, for a judicial investigations. 
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(b)  
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Figure 4. Daily averages of observed (red dots) and meteorologically normalized 

concentrations (green lines) of (a) NOx, (b) SO2 , (c) CO and (d) H2S. The blue solid line 

represents the line joining the wbs change-points, while the grey areas show the periods 

of COVA plant shutdowns. 

The second consists in another plant shutdown, from April to July 2017, due 

to a major accident, caused by the release of hydrocarbons from a storage unit. 

As far as the SO2, and CO signals are concerned, a decrease in concentrations 

corresponding to these periods can be observed in Figure 4. With respect to the 

NOx pollutant, a strong correspondence was found between the normalized 

concentrations trend and the event occurred at the COVA plant in 2016. The lack 

of correspondence with the event registered in 2017 may be due to other sources 

contributing to the observed NOx level. H2S, instead, seems to be less affected by 

these closures period, as expected, since this pollutant is representative of the 

fugitive emissions from oil tanks and piping of the COVA plant.  

The results seems to confirm the goodness of this approach in identifying 

an atmospheric response in the observed data after an unplanned event or a 

change in emission sources. However, more stringent evidences are desirable to 

confirm this hypothesis, due to extreme complexity of the overall effects of the 

start/stop plant procedures on air quality.  

Finally, Table 4 summarizes the results of the Theil-Sen regression analysis. 

For NOx, a statistically significant trend for normalized and observed data were 

found, while less statistically significant normalized trends were found for H2S 

and CO (p<0.05) and SO2 (p<0.1). 



Table 4. Theil-Sen slope and 95 % confidence intervals of the observed and normalized 

pollutants concentrations. The symbols shown next to the square bracket relate to how 

statistically significant the trend estimate is: p < 0.001 = ∗ ∗ ∗, p < 0.01 = ∗∗, p < 0.05 = ∗ and 

p < 0.1 = +. 

pollutant 
 Theil-Sen slope  

(µg m-3 year-1) 

95% confidence interval 

NOX observed -0.66 [-1.13, -0.27]*** 

 normalized -0.65 [-1.07, -0.39]*** 

SO2 observed -0.03 [-0.32, 0.26]  

 normalized -0.19 [-0.39, 0.02]+ 

CO observed 0.01 [0.00, 0.02] * 

 normalized 0.01 [0.00, 0.01] * 

H2S observed 0.12 [0.02, 0.20] * 

 normalized 0.11 [0.04, 0.17] * 

 

The comparison between the observed and normalized slopes of each 

pollutant show a generally scarce influence of the weather conditions to the 

trend of the pollutants. This result appears to be more stringent in the case of 

NOx due the high statistical significance of the Theil-Sen analysis. This is 

consistent with the information deduced from the results illustrated above, 

which indicate in the local NOx sources, mainly the COVA plant and the traffic, 

the main drivers of NOx variability.  

4. Conclusions 

Ambient air pollution remains a great challenge for sustainable 

development and public health safeguard. Meteorological influences upon air 

quality trend analysis can complicate the evaluations of air pollution control 

efforts. The joined interpretation of the observed data of air pollutants, of the 

simulations produced by the RF models used to remove the effect of 

meteorology, and the subsequent statistical analysis, adopted in the present 

study, represents an effective tool to assess and quantify changes in air pollution. 

In particular, the technique of the meteorological normalization allows 

discriminating the contribution of meteorology from those of source’s emissions, 

while the wbs method seems to be promising in correctly following main 

changes in the normalized pollutants concentrations. Since the RF models are 

data driven, caution is required when generalizing the results obtained to 

different conditions and/or sites. Moreover, a deeper knowledge of the study 

area characterized by an complex orography, a more comprehensive collection 

of the available metadata as well as a wider awareness of all natural or anthropic 

events affecting local air quality, can be obtained only through a close 

collaboration with the local environmental and health authorities who are the 

most informed on the criticalities of the examined territory.  

     Overall, our results show that the adopted procedure can improve 

qualitative trend assessment of observed air pollutants data and help in 

revealing shifts in pollutants levels that can not be clearly seen in the original 

data, so providing crucial information for the implementation of effective 

strategies to prevent the health impact of air pollution. 
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Appendix A 

 Statistic name Equation 

 
Mean Bias Error 𝑀𝐵𝐸 =

1

𝑁
∑ 𝑀𝑖

𝑁

𝑖=1

− 𝑂𝑖 

 
Mean Absolute Error 𝑀𝐴𝐸 =

1

𝑁
∑|𝑀𝑖 − 𝑂𝑖|

𝑁

𝑖=1

 

 Root Mean Squared 

Error 
𝑅𝑀𝑆𝐸 = √(

∑ (𝑀𝑖 − 𝑂𝑖)2𝑁
𝑖=1

𝑁
) 

 Coefficient of 

Determination 

 

𝑅2

= (
{∑ (𝑀𝑖 − �̅�)(𝑂𝑖 − �̅�)𝑁

𝑖=1 }

{∑ (𝑀𝑖 − �̅�)2(𝑂𝑖 − �̅�)2𝑁
𝑖=1 }

1
2

⁄ )

2

 

 

Index of Agreement 

𝐼𝑜𝐴 = 1 −
∑ |𝑀𝑖−𝑂𝑖|𝑁

𝑖=1

𝑐 ∑ |𝑂𝑖−�̅�|𝑁
𝑖=1

 , when ∑ |𝑀𝑖 − 𝑂𝑖|𝑁
𝑖=1 ≤

𝑐 ∑ |𝑂𝑖 − �̅�|𝑁
𝑖=1  

𝐼𝑜𝐴 =
𝑐 ∑ |𝑂𝑖−�̅�|𝑁

𝑖=1

∑ |𝑀𝑖−𝑂𝑖|𝑁
𝑖=1

− 1, when ∑ |𝑀𝑖 − 𝑂𝑖|𝑁
𝑖=1 >

𝑐 ∑ |𝑂𝑖 − �̅�|𝑁
𝑖=1  

with c=2 

 Where: 

𝑁 = total number of hourly measurements; 𝑀𝑖 = ith predicted value; 𝑂𝑖 = ith 

observed value; �̅� = mean of the predicted values; �̅� = mean of the observed values 
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