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We study a special class of dynamical systems of Boltzmann-Bogolubov and Boltzmann-
Vlasov type on in�nite dimensional functional manifolds modeling kinetic processes in many-
particle media. Based on algebraic properties of the canonical quantum symmetry current
algebra and its functional representations we proposed a new approach to invariant reducing
the Bogolubov hierarchy on a suitably chosen correlation function constraint and deducing
the related modi�ed Boltzmann-Bogolubov kinetic equations on a �nite set of multiparticle
distribution functions.
It is well known that the classical Bogolubov-Boltzmann kinetic equations under the

condition of manyparticle correlations [2, 4, 8, 9, 6, 14, 15, 12] at weak short range interaction
potentials describe long waves in a dense gas medium. The same equation, called the Vlasov
one, as it was shown by N. Bogolubov [9], describes also exact microscopic solutions of the
in�nite Bogolubov chain [8] for the manyparticle distribution functions, which was widely
studied making use of both classical approaches in [4, 6, 7] and in [10, 11, 16, 18], making use
of the generating Bogolubov functional method and the related quantum current algebra
representations.
A.A. Vlasov proposed his kinetic equation [21] for electron-ion plasma, based on general

physical reasonings, that in contrast to the short range interaction forces between neutral
gas atoms, interaction forces between charged particles slowly decrease with distance, and
therefore the motion of each such particle is determined not only by its pair-wise interaction
with either particle, yet also by the interaction with the whole ensemble of charged particles.
In this case the Bogolubov equation for distribution functions in a domain � � R3
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where z := (x; p) 2 T �(�); t 2 R+ is the temporal evolution parameter, f�; �g(m) denotes
the canonical Poisson bracket [1, 3, 5, 6, 20] on the product T �(�)m;m 2 N; and V (x�
x0); x; x0 2 �; is an interparticle interaction potential, - reduces to the Vlasov equation if to
put in (0.1)
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that is to assume that the two-particle correlation function [4] vanishes:
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for all z; z0 2 T �(�) and t 2 R+: Then one easily obtains from (0.1) that
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for all z 2 T �(�) and t 2 R+: Remark here that the equation (0.4) is reversible un-
der the time re�ection R� 3 �t � t 2 R+; thus it is obvious that it can not describe
thermodynamically stable limiting states of the particle system in contrast to the classical
Bogolubov-Boltzmann kinetic equations [2, 4, 8, 6, 10, 18], being a priori time nonre-
versible owing to the choice of boundary conditions in the correlation weakening form. This
means that in spite of the Hamiltonicity of the Bogolubov chain for the distribution func-
tions, the Bogolubov-Boltzmann equation a priori is not reversible. It is also evident that
the condition (0.3a) does not break the Hamiltonicity - the equation (0.4) is Hamiltonian
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with respect to the following Lie-Poisson-Vlasov bracket:

(0.5) ffa(f); b(f)gg :=
Z
T�(�)

dz f(z)fgrad a(f)(z); grad b(f)(z)g(1);

where grad(�) := �(�)=�f; f 2 D(T �(�)) := Mf1 ; respectively a; b 2 D( Mf1) are smooth
functionals on the functional manifold Mf1 ; consisting of functions fast decreasing at the
boundary @� of the domain � � R3:The bracket expression (0.5) allows a slightly di¤erent
Lie-algebraic interpretation, based on considering the functional space D( Mf1) as a Pois-
sonian manifold, related with the canonical symplectic structure on the di¤eomorphism
group Diff(�) of the domain � � R3; �rst described [22, 23] still in 1887 by Sophus Lie.
Namely, the following classical theorem [1, 17, 23] holds.

Theorem 0.1. The Lie-Poisson bracket at point (�; �) 2 T �� (Diff(�)) on the coadjoint
space T �� (Diff(�)); � 2 Diff(�); is equal to the expression
(0.6) ff; gg(�) = (�j[�g(�)=��; �f(�)=��])c
for any smooth right-invariant functionals f; g 2 C1(T �� (Diff(�));R):
These aspects and its di¤erent consequences are analyzed in detail in our report.
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