Lessons on long-term structural Stability after selection cutting in uneven-aged and even-aged northern hardwood stands

IECF 2021

Sarita Bassil, PhD

All rights reserved Use of all or parts of this document prohibited without express consent of the senior author

Introduction

Selection cuttings in uneven-aged stands of northern hardwoods maintain:

- Sustainable and consistent production
- Stable stand conditions
- Regulated stand structure that can be sustained
- Multiple levels of ecosystem complexity

But applying selection-like cuttings in second-growth even-aged stands might lead to unfavorable outcomes with respect to structural and timber production goals

Introduction

Northern hardwoods have shade-tolerant species that survive in the understory and mid-story for many years. That gives the diameter distribution for both evenand uneven-aged stands an overall reverse-J form.

With species of high shade tolerance ...

... many overtopped and lower intermediates live on

This Study

Investigated long-term structural stability in northern hardwood stands

Age Characteristic	Site	Number of Stands	Treatment
Second-growth Even- aged with residuals from past high-grading	Argonne Experimental Forest (AEF), WI	3	Selection- like
Uneven-aged	Dukes Experimental Forest (DEF), MI	12	Single- tree selection
	Cuyler and Secord Hill State Forests (CSH), NY	6	
	Anna Huntington Wildlife Forest (HF), NY	8	

Bassil, S., Nyland, R.D., Kern, C.C., Kenefic, L.S. 2019. Dynamics of the diameter distribution after selection cutting in uneven-aged and even-aged northern hardwood stands: a long-term evaluation. Can.J. For.Res. 49(12): 1525-1539. doi. 10.1139/cjfr-2019-0204.

Analysis (SAS 9.4 M1)

Visual assessment of plots of diameter distributions through time for trees grouped into 2.5 cm diameter class

Plot attributes through time : Median DBH, Residual basal area, Total tree density.

3

2

Plotting scale and shape parameters through time of fitted 3-parameter Weibull probability density function with location fixed at 11.4cm

This Results: Diameter Distribution Study

Second-growth even-aged stand

Uneven-aged stand

Results: attributes

Uneven-aged stand

3 ⊡)

80

80

Results: 3-Parameter Weibull function

Even-aged

Uneven-aged

Second-growth even-aged stand

AEF(ARG75)

Uneven-aged stand DEF(OMD1)

Uneven-aged stand CSH (E13)

Conclusion

Single-tree selection cuttings in uneven-aged northern hardwood stands created and maintained a stable diameter distribution and uniformity of conditions through consecutive entries

But after applying selection-like cuttings for six 10-year cutting cycles in even-aged stands, the structure became unstable and unpredictable

Acknowledgements

- The Northeastern States Research Cooperative (NSRC) for funding this project.
- Researchers at USDA Forest service- Northern Research Station for providing the data and for feedback on the study especially Dr. Laura S. Kenefic, and Dr. Christel Kern.
- Dr. Ralph D. Nyland for his continuous support and for his insight on this research project.

Thank you

Sarita Bassil, PhD sbassil@syr.edu/ sarita.y.bassil@gmail.com

All rights reserved Use of all or parts of this document prohibited without express consent of the senior author