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 Abstract: Currently, Pinus pinea, a valuable Mediterranean forest species in Catalonia, Spain, pine- 18 

cone production is quantified visually before harvest with a manual count of the number of pine- 19 

cones of 3rd year in a selection of trees and then extrapolated to estimate forest productivity. To 20 

increase efficiency and objectivity of this process, we propose the use remote sensing to estimate 21 

pinecone productivity for every tree in a whole forest (complete coverage vs. subsampling). The use 22 

of unmanned aerial vehicle (UAV) flights with high spatial resolution imaging sensors is hypothe- 23 

sized to offer the most suitable platform with the most relevant image data collection from a mobile 24 

and aerial perspective. UAV flights and supplemental field data collections were carried out in sev- 25 

eral locations across Catalonia using sensors with different coverages of the visible (RGB) and near 26 

infrared (NIR) spectrum. Spectral analyses of pinecones, needles and woody branches using a field 27 

spectrometer indicated better spectral separation when using near-infrared sensors. The aerial per- 28 

spective of the UAV was anticipated to reduce the percentage of hidden pinecones from a one-sided 29 

lateral perspective when conducting manual pinecone counts in the field. The fastRandomForest 30 

WEKA segmentation plugin in FIJI (Fiji is just ImageJ) was used to segment and quantify pinecones 31 

from the NIR UAV flights. Regression of manual image-based pinecone counts to field counts was 32 

R2=0.24; however, the comparison of manual image-based counts to automatic image-based counts 33 

reached R2=0.73. This research suggests pinecone counts were mostly limited by the perspective of 34 

the UAV, while the automatic image-based counting algorithm performed relatively well. In further 35 

field tests with RGB color images from the ground level, the WEKA fastRandomForest demon- 36 

strated an out of bag error of just 0.415%, further supporting the automatic counting machine learn- 37 

ing algorithm capacities.  38 

Keywords: Pinus pinea; forest productivity; remote sensing; RGB; NIR; machine learning 39 

 40 

1. Introduction 41 

Currently, pine forest pinecone production is quantified visually before the start of 42 

the collection with a subjective estimate of the number of pinecones in a selection of trees 43 

in a forest and then extrapolate to an estimation of the full productivity of the forest[1–3]. 44 

In order to increase the efficiency and objectivity of the process, one possible option for 45 

improvement is the use remote sensors to estimate pine productivity for a sufficient 46 
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number of trees in a systematic way for the same extrapolation or even count the pine- 1 

cones directly or estimate productivity for every tree in a whole forest (complete coverage 2 

vs. subsampling)[4]. Ideally, the sensor used should be able to differentiate pinecones 3 

from the rest of the tree and the individual trees from their surrounding environment 4 

where they are located[5]. The use of unmanned aerial vehicle (UAV) flights in close prox- 5 

imity with specific sensors might offer the most suitable platform for sensors, since they 6 

enable high enough resolution data collection for pinecones to be detected. Previous un- 7 

documented tests have attempted to use aerial color photography images captured from 8 

UAVs to quantify pinecone production directly before harvest, but these studies were 9 

concluded without reaching satisfactory results (pers comm). Improvement hinges thus 10 

on the capture of both high-resolution images and using sensors with more spectral infor- 11 

mation-differentiation than is offered by RGB (red, green, blue) color sensors measuring 12 

only in visible light region spectral (VIS) bands. Therefore, this study was planned to har- 13 

ness the full potential of UAV platforms to quantify pinecone production directly by ex- 14 

panding measurements towards improving the differentiation of pinecones by including 15 

measurements in the near infrared (NIR) regions of the electromagnetic spectrum and de- 16 

ploying more powerful machine learning techniques for both tree and pinecone differen- 17 

tiation. The overall objective is directly quantifying pinecone production with UAV re- 18 

mote imaging sensors to develop faster, more efficient and more precise forest productiv- 19 

ity evaluations than the current manually intensive visual pinecone counting protocols. 20 

2. Materials and Methods 21 

2.1. Spectoscopy study of pinecones 22 

On the 28th of January of 2019, we collected samples of pinecones, needles and wood 23 

in order to take to the University of Barcelona laboratory for spectral measurements with 24 

an OceanOptics FLAME (Ocean Optics Inc., USA) VIS-NIR spectrophotometer with spec- 25 

tral coverage of 350 to 1000 nm and a spectral resolution of 0.375 nm in 2048 spectral 26 

bands. A total of 100 spectral measurements were made with the spectrophotometer in- 27 

cluding 45 pinecone measurements, 25 of pine needles and 35 measurements of wood on 28 

different sample.   29 

2.2. UAV flights and tree delineation 30 

In order to best test the possibility of UAV-captured images to quantify pinecones 31 

using RGB or infrared imaging, images and data produced from flights of the DJI Mavic 32 

2 Pro UAV (DJI Inc., Shenzhen, China) with the 12 MP G-R-NIR modified-RGB camera 33 

(modified to be able to capture Green, Red and Near Infrared by maxmax.com). Images 34 

at all sites were captured every 2s during flight for a minimum of 80% overlap and pro- 35 

cessed to create orthomosaics using Agisoft Photoscan (AgiSoft LLC, St. Petersburg, Rus- 36 

sia). The orthomosaics each included >100 images taken from both 30 m and 15 m to pro- 37 

duce quality mosaics from the 15 m data with a GSD of approximately 0.3 cm/pixel. 38 

Here we aimed to test if these sensors provide sufficiently high spatial resolution and 39 

spectral differentiation in UAV flights at different stages of pinecone maturity with flights 40 

in May, July and November of 2000. Three different stands of P. pinea were selected for 41 

the test flights, one experimental stand at IRTA in Caldes de Montbui and two others in 42 

Girona province. Only preliminary analyses of a selection of the data are presented here.  43 

2.3. Pinecone quantification 44 

In order to further test the parameters used in the automated image-based pinecone 45 

counting process, more images were captured from the ground level in order to acquire 46 

additional image data for training and testing the functionality of the different input pa- 47 

rameters of the fastRandomForest image classification algorithm as implemented in FIJI 48 

by using the Trainable WEKA segmentation plugin [6]. 49 

3. Results 50 
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 1 
Figure 1. Spectral reflectance of the three main components of the P. pinea pines: Pinecones 2 

(yellow), leaves (green) and wood (brown). The most marked differences are at 550-630 3 

nm (Red) and from 750-850 nm (red edge and near infrared). 4 

 5 

In Figure 1 we can observe clear differences between the spectral reflectance of the 6 

cones, leaves, and pine wood of P. pinea. Above all, the spectral study carried out in the 7 

laboratory at the UB with the Oceanoptics Flame VIS-NIR spectrophotometer indicates 8 

that three of the four bands of the multispectral sensor the red, the red-edge and the near 9 

infrared would be able to distinguish between pinecones, leaves and wood in a VIS-NIR 10 

multispectral image, whether in discrete bands or in an NDVI modified RGB camera. 11 

 12 

 13 

 14 
Figure 2. Example of the delineation of tree crowns using the integrated GPS of the RGB 15 

camera to produce digital vegetation models (DVMs). In this case, the trees are delineated 16 

and segmented using solely the 3D information provided by the Structure from Motion 17 

(SfM) workflow and the GPS data integrated with the digital camera as part of the UAV. 18 

 19 

Tree crown delineation was achieved within FIJI using a simple thresholding to re- 20 

move low vegetation after terrain correction subtracting the Agisoft Photoscan Structure 21 

from Motion (SfM) Digital Elevation Model (DEM) from the full Digital Surface Model 22 

(DSM) to get the resulting Digital Vegetation Model (DVM). (DVM = (DSM>0.5)-DEM). In 23 

the example shown in Figure 2 with evenly spaced trees in a forest plantation plot, the 24 

result was easily converted to a tree segmentation and numeration with a few lines of 25 

code in a FIJI macro. The eventual goal of the study is to put together a plugin of useful 26 

forest productivity codes that may be of use for forest management using UAV SfM out- 27 

puts and original RGB and NIR image data. 28 
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 1 
Figure 3. Correlation between manual image-based counts (a best-case scenario) and man- 2 

ual field-based counts (real ground truthing) for 12 MP modified-RGB (G-Red-Near In- 3 

frared) images collected at the IRTA plantation site taken at 15 m above ground level. The 4 

R2=0.24 here is based on all 33 trees for which the pinecones were counted in the field 5 

(R2=0.35 excluding the image-based 0s). The automatic image-based pinecone count in- 6 

creases to R2=0.725 but note that in this case it includes only 6 trees as detailed below. 7 

 8 

The manual image-based counts were conducted from tree cutouts at full resolution 9 

using a selection of the best images for each tree. In other segmentation and quantification 10 

this is a critical pass to check if the “perspective of observation” is adequate for achieving 11 

realistic results. By the slope of the correlation shown in Figure 3, we may surmise that 12 

1/10th or more of pinecones were not observed from a nadir perspective. The R2 for the 13 

manual image-based pinecone count did increase slightly to 0.35 when excluding the ob- 14 

servations with 0 manual image-based values but note that then only 7/33 trees had any 15 

visible pinecones observed from the 15 m a.g.l. zenithal UAV images. In the follow-up 16 

analysis pipeline 6/ 7 tree images where pinecones had been visually observed were com- 17 

bined into an image montage and passed together through an image-based automated 18 

classification and pinecone counting process. For the comparison of manual image-based 19 

and automatic image-based counting the R2 was 0.78. 20 

 21 

 22 

 23 
Figure 4. Top left, modified-RGB image montage fastRandomForest classification map; 24 

Top right, pinecone count using FIJI macro code for counting pinecones from trees from 25 

above (the pinecone size filter should be adjusted); Bottom left, “pinecone” probability 26 

map with high pinecone probabilities in white; Bottom right, “other” probability map 27 

with low probability of being in the “other” class in black (indicating pinecones). 28 

 29 



Environ. Sci. Proc. 2021, 3, x FOR PEER REVIEW 5 of 6 

 

In general, the WEKA fastRandomForest classification results of the modified NDVI 1 

and RGB images taken at the ground level were excellent though quite computationally 2 

expensive (heavy on processing and memory) though the algorithm can be trimmed to 3 

include only the basic input image as an original jpeg file and with only a limited amount 4 

of texture analyses (part of its success is in the textural (information extracted from a mov- 5 

ing window analysis of image variance as well as spectral separation of the image pixels 6 

(information based on a single pixel). In this instance showing false positive vs. false neg- 7 

atives with a bootstrapping and an out of bag error of 0.415% for the image pixel-based 8 

classification, though the quantification of pinecones may itself cause some additional er- 9 

rors as the filtering and counting needs to include approximate pinecone size in pixels. 10 

Similar results were obtained for RGB images taken from the field and UAV. 11 

4. Discussion 12 

This study represents the first known documented attempt at automatic pinecone 13 

quantification using UAV imaging techniques, as far as the authors were aware at the time 14 

of submission. We have attempted a systematic approach to this challenge and have met 15 

with mixed success. While there exist large spectral libraries, we still felt it best to start 16 

with a preliminary study on the spectral separability of the tree components for the spe- 17 

cific case of segmenting Pinus pinea pinecones. Numerous studies have been developed 18 

along the lines of tree crown delineation at different spatial scales, including UAVs [7,8], 19 

yet the very fine detail required for the segmentation of pinecones and other fruits using 20 

UAVs is relatively recent [9–11]. In many cases, the counting of expertly pruned commer- 21 

cial fruit trees bearing easily distinguished fruits has proven less of a challenge compared 22 

to counting pinecones in forest plantations. Furthermore, the Pinus pinea pinecones that 23 

are ready for harvest and of the most interest mature in their third year, resulting in them 24 

being largely masked from view, making the issue more of a matter of perspective of ob- 25 

servation than algorithm or spectral separability capacities. In this case, it may make sense 26 

using either aerial off-nadir views or terrestrial platforms for image data capture. 27 

5. Conclusions 28 

Firstly, we tentatively conclude that there may be some options for the automated or 29 

semi-automatic estimation of pinecones in trees of Pinus pinea. This may be considered 30 

somewhat different from the original goal or challenge of counting pinecones using UAVs. 31 

Based on the comparisons of manual field-based pinecone counting with manual image- 32 

based pinecone counting, there are a very low number of pinecones visible in the tree 33 

crowns when observed from directly above using a UAV. On the other hand, the manual 34 

image-based pinecone counts were well correlated with the automatic image-based pine- 35 

cone counts at both the UAV and field levels for the modified-RGB camera. Similar results 36 

were observed from the RGB images. Finally, there is a chance that the combination of 37 

some additional tree level data along with the pinecone estimation from UAVs may aide 38 

to improve the results (multivariate model with tree allometry). To this end, for future 39 

work we may propose an improved modified-RGB camera system with integrated UAV 40 

GPS for the optimal combination of GPS integration with NIR spectral coverage.  41 
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