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Abstract: The quickest transshipment of the evacuees in an integrated evacuation network topology 8 

depends upon the evacuee arrival pattern in the collection network and their better assignment in 9 

the assignment network with appropriate traffic route guidance, destination optimization, and op-10 

timal route. In this work, the quickest transshipment aspect in an integrated evacuation network 11 

topology is revisited concerning a transit-based evacuation system. Appropriate collection ap-12 

proaches for the evacuees and their better assignment to transit vehicles for their quickest transship-13 

ment in such an embedded evacuation network are presented with their solution strategies. 14 

Keywords: integrated network; evacuee arrival pattern; transit-vehicle assignment; quickest trans-15 

shipment  16 

 17 

1. Introduction 18 

Evacuation planning problem deals with sending the maximum number of evacuees 19 

from sources to sinks in minimum time as efficiently as possible. The bus-based evacua-20 

tion planning problem (BEPP) is an important tool for transit-based evacuation planning. 21 

The effectiveness of the solution of BEPP depends upon the evacuee arrival patterns at 22 

the pickup locations and their appropriate assignment to transit-vehicles in the available 23 

evacuation network [1–3]. 24 

The 𝑵𝑷-hard multi-depot, multi-trip BEPP was introduced and analyzed promi-25 

nently in [4] which is closer to the split delivery multi-depot vehicle routine problem with 26 

inter-depot routes. However, if there is only one bus-depot, assuming that the bus pickups 27 

the same number of people that equals its capacity, the author in [5] has also proposed 28 

the BEPP for the evacuation of a region. Based on such BEPP, Pyakurel et al. [6] explored 29 

it to the transit-dependent. They all have considered that the evacuees have gathered 30 

themselves at different pickup locations and were silent about their arrival patterns.  31 

In our work, we are focused on the new and better-suited form of arrival pattern of 32 

evacuees in the earliest arrival flow pattern. It will maximize the arrival of evacuees at 33 

every possible instance at the pickup locations with zero transit times from a source. We 34 

present a polynomial-time earliest arrival evacuee algorithm following the principle of 35 

temporally repeated flows to solve the earliest arrival evacuee problem with zero transit 36 

times and partial arc reversal capability. Such evacuees collected at different pickup loca-37 

tions of the primary sub-network are considered as the supplies during the subsequent 38 

vehicle assignment for the secondary sub-network. The partial arc reversal approach for 39 

the collection of evacuees also reduces the waiting instances at different pickup locations 40 

and helps to improve the solution. The assignment of transit-vehicles in such a general or 41 

a prioritized embedded network is also carried in a dominating solution approach for 42 

their quickest transshipment. The rest of the paper is organized as follows. In Section 2, 43 

we explain about the flow of evacuees. The network topology in Section 3. The integrated 44 
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evacuation system related to the general and the prioritized network in Section 4 and 5, 1 

respectively. Section 6 concludes the paper.  2 

2. Flow of evacuees  3 

In an evacuation planning problem, the flow stands for either the evacuees or the 4 

evacuee carrying vehicles.  An s-y flow of evacuees over time from source s to the sink  5 

y is a non-negative function  f  on 𝐴 × 𝑅+  for given time  𝑻 = {0,1, … , 𝑇} satisfying the 6 

flow conservation and capacity constraints (1-3). The inequality flow conservation con-7 

straints allow it to wait for flow at intermediate nodes, however, the equality flow conser-8 

vation constraints force that flows entering an intermediate node must leave it. 9 

∑  ∑ 𝑓𝑇
𝜎=𝜏𝑎𝑎𝜖 𝐴𝑖

𝑖𝑛  (𝑎, 𝜎 − 𝜏𝑎) −   ∑  ∑  𝑓𝑇
𝜎=0𝑎𝜖 𝐴𝑖

𝑜𝑢𝑡  (𝑎,   𝜎)  = 0 , ∀  𝑖 ∈ 𝑉\(𝑆 ∪

𝑌),(1) 
(1) 

∑  ∑ 𝑓𝜃
𝜎=𝜏𝑎𝑎𝜖 𝐴𝑖

𝑖𝑛  (𝑎, 𝜎 − 𝜏𝑎) −   ∑  ∑  𝑓𝜃
𝜎=0𝑎𝜖 𝐴𝑖

𝑜𝑢𝑡  (𝑎,   𝜎)  ≥ 0 , ∀  𝑖 ∈ 𝑉\(𝑆 ∪

𝑌), 𝜃 ∈ 𝑻, (2) 
(2) 

0 ≤ f (a, θ) ≤ 𝑢𝑎    ∀  𝑎 ∈ 𝐴 ,    𝜃 ∈ 𝑻. (3) (3) 

The sets of outgoing and incoming arcs corresponding to the node 𝑖 𝜖 𝑉 are denoted 10 

by, 𝐴𝑖
𝑜𝑢𝑡 = {𝑎 = (𝑖, 𝑗) 𝜖 𝐴} and 𝐴𝑖

𝑖𝑛 = {𝑎 = (𝑗, 𝑖) 𝜖 𝐴}, respectively. Not stated otherwise, 11 

for all 𝑦 𝜖 𝑌 and 𝑠 𝜖 𝑆, we assume that 𝐴𝑖
𝑜𝑢𝑡 = 𝐴𝑖

𝑖𝑛 = ɸ in the case without arc reversals.  12 

However, for 𝑠 and  𝑦, the flow value be υf (s) > 0 and υf (y) < 0, respectively, where 13 

∑   υf (i) = 0𝑖 𝜖 𝑉 . If the supply and demand on sources and sinks υf (i) is a fixed value for 14 

all 𝑖 𝜖 {𝑠, 𝑦}, then the earliest evacuee problem maximizes value υf (θ) for all 𝜃 𝜖 𝑻, as in 15 

Equation (4) safisfying the constraints (1-3). 16 

(𝜈𝑓 , 𝜃) = ∑  ∑ 𝑓𝜃
𝜎=0 𝑎𝜖 𝐴𝑠

𝑜𝑢𝑡  (𝑎, 𝜎) =   ∑  ∑  𝑓𝜃
𝜎=0𝑎𝜖 𝐴𝑦

𝑖𝑛  (𝑎,   𝜎 − 𝜏𝑎). (4) (4) 

The total amount out of the source s that reached to the pickup locations Y for all 17 

time up to  𝜃′ ∈ 𝒁+, with zero transit times 𝜏𝑎 = 0, is given by,  18 

|𝜈𝑓|𝜃′ = ∑ |𝑣𝑎𝑙𝑢𝑒 (𝑌, 𝜃)|.𝜃′
𝜎=1  (5) (5) 

For the given time bound T, the value of Equation (5) becomes,  19 

|𝜈𝑓| = ∑ |𝑣𝑎𝑙𝑢𝑒 (𝑌, 𝜃)|𝑇
𝜎=1 . (6) (6) 

We consider a flow of evacuees over time problem with zero transit time function f: 20 

𝐴 × 𝒁+ → 𝑹+. 21 

3. Network topology   22 

In an integrated evacuation scenario, we consider a network 𝑁, obtained by combin-23 

ing two of its components 𝑁1 and 𝑁2 representing a primary and a secondary sub-net-24 

work, respectively. The first part 𝑁1 contains directed two-way road segments and the 25 

partial arc reversals is applicable. The second part 𝑁2 contains directed one-way road 26 

segments, connecting the bus depot to the pickup locations, and undirected edges con-27 

necting such pickup locations to the sinks for the bus routing. Evacuees collected at the 28 

pickup locations Y in 𝑁1 = (𝑠, 𝑉, 𝐴, 𝑢𝑎, 𝜏𝑎 , 𝑌) are assigned to transit-buses in the appropri-29 

ate route across 𝑁2 and are finally sent to the sinks. Here, 𝑉 = {𝑣1, 𝑣2, 𝑣3, … . 𝑣𝑛} and 𝑌 =30 

{𝑦1, 𝑦2 , 𝑦3, … , 𝑦𝑛} are the set of auxiliary nodes and the set of pickup locations, respectively. 31 

Set of arcs are denoted by  32 

𝐴 = {𝑎 = (𝑠, 𝑣) ∪ (𝑣, 𝑦): 𝑣 ∈ 𝑉, 𝑦 ∈ 𝑌 } where 𝑢𝑎 and 𝜏𝑎 denotes the capacity and transit 33 

times for 𝑎 ∈ 𝐴.  34 
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Also, in 𝑁2 = (𝑑, 𝑌, 𝐸, 𝜏𝑒 , 𝑍),  d is the bus depot at which a set of transit-buses B 1 

having the homogeneous bus capacity are located initially and are assigned as required 2 

during the evacuation process. This node d does not play significant roles further on the 3 

solution procedure as the buses do not return to it even after the completion of the evac-4 

uation plan because of risks under threat. In an embedding, Y works as the supply nodes 5 

during the bus-assignment in 𝑁2. The set of sinks is denoted by 𝑍 = {𝑧1, 𝑧2, 𝑧3, … . 𝑧𝑛}.  In 6 

this mixed sub-network, the set E consists of the one-way arcs e=(d, y) with 𝑦 ∈ 𝑌 and the 7 

undirected edges e=[y, z] with 𝑧 ∈ 𝑍. Here , 𝜏𝑒 is the transit times for 𝑒 ∈ 𝐸 in 𝑁2. 8 

Figure 1. An integrated network topology consisting of primary and secondary sub-network in an 9 

embedding. 10 

Based on the BEPP introduced by [4], authors in [5] has developed its simplified ver-11 

sion for the evacuation of a region from a set of collection points to a set of capacitated 12 

shelters with the help of buses in minimum time assuming that the bus pick ups exactly 13 

the number of people that equals its capacity. During their solution on branch and bound 14 

framework, they have presented four different upper bounds and three lower bounds for 15 

time, three branching rules to minimize the number of branches, and two tree reduction 16 

strategies to avoid the equivalent branches. Among them, four upper bounds are con-17 

structed in polynomial-time complexity by four different heuristic algorithms, three are 18 

based on precomputed tour lists and the fourth one uses on iterative way without any 19 

precomputed tour lists and that dominates the rest concerning to evacuation duration and 20 

is considered as the dominating assignment approach [7].   21 

Here, we introduce the earliest arrival evacuee problem respecting the partial arc re-22 

versal capability in 𝑁1. 23 

Problem 1. Given an evacuation sub-network 𝑁1 = (𝑆, 𝑉, 𝐴, 𝑢𝑎, 𝜏𝑎, 𝑌) with supplies 24 

at 𝑆, demands at 𝑌, auxiliary nodes 𝑉, arc capacity 𝑢𝑎, and arc transit time 𝜏𝑎 for 𝑎 𝜖 𝐴. 25 

The quickest partial arc reversal transshipment problem is to find the quickest arrival of 26 

evacuees at 𝑌 with partial arc reversals capability. 27 

Let the reversals of an arc 𝑎 = (𝑖, 𝑗) be 𝑎′ = (𝑗, 𝑖). Then the transformed network of 28 

𝑁1 consists of the modified arc capacities and constant transit times as, 29 

𝑢�̅�   =  𝑢𝑎 +  𝑢𝑎′    and  𝜏�̅�  =𝜏𝑎  if  𝑎 ∈ 𝐴  and is  𝜏𝑎′ for otherwise.                               (7) 

Here, an edge �̅� ∈ �̅�   in transformed network  𝑁1
̅̅ ̅ if 𝑎 ∨ 𝑎′ ∈ 𝑁1 . Concerning the 30 

auxiliary reconfiguration, it is allowed to redirect the arc in any direction with the modi-31 

fied increased capacity but with the same transit time in either direction. The remaining 32 

graph structure and data are unaltered.  33 

 34 

Algorithm 1: Earliest arrival evacuee algorithm.  35 

Input: A flow over time sub-network  𝑁1 = (𝑠, 𝑉, 𝐴, 𝑢𝑎, 𝜏𝑎 , 𝑌)  with 𝜏𝑎 = 0 for each 𝑎 ∈ 𝐴. 36 

1. Construct a transformed network 𝑁1
̅̅ ̅ to 𝑁1 as in Equation (7). 37 

2. Determine the maximum number of evacuees at every possible time instance at each Y from s as in [8]. 38 

3. For each 𝜃 ∈ 𝑇,  reverse 𝑎′ ∈ 𝐴 up to capacity 𝑐𝑎 − 𝑢𝑎 if and only if 𝑐𝑎 > 𝑢𝑎, 𝑢𝑎 replaced by 0 whenever 𝑎 ∉ 𝐴, 39 

in 𝑁1, where 𝑐𝑎 denotes the static flow value in each 𝑎 ∈ 𝐴 for such network. 40 
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4. For each 𝜃 ∈ 𝑇 and 𝑎 ∈ 𝐴, if 𝑎 is reversed, 𝜅𝑎 = 𝑢�̅� − 𝑐�̅�′  and 𝜅𝑎′ = 0. If neither 𝑎 nor 𝑎′ is reversed, 𝜅𝑎 =1 

𝑢𝑎 − 𝑐𝑎 , where 𝜅𝑎 is saved capacity of 𝑎, [9]. 2 

  Output:  Earliest arrival of evacuees at Y with 𝜏𝑎 = 0  for each 𝑎 ∈ 𝐴. 3 

  4 

Theorem 1. The earliest arrival evacuee problem having zero transit times with par-5 

tial arc reversal capability follows the principle of temporally repeated flows and can be 6 

solved in polynomial-time complexity.  7 

Proof: Steps 1, 2, and 4 given by Algorithm 1 are solved in linear time. Its time com-8 

plexity is dominated by the time complexity of computation of the earliest arrival evacu-9 

ees at the pickup locations Y with zero transit times on each arc as in [8] in Step 2, which 10 

is solved in polynomial-time. Thus, it can be solved in polynomial-time complexity in 𝑁1. 11 

The flow over time problem having zero transit times that reached to each of the 12 

pickup locations determines the maximum number of evacuees at every possible time in-13 

stance from the beginning in 𝑁1.  That means the earliest arrival of evacuees at Y from s 14 

with zero transit times in the transformed network follows the principle of temporally 15 

repeated flows which is equivalent to the solution with arc reversals capability in the orig-16 

inal network [10].                       17 

4. Integrated evacuation network 18 

For large scale disasters with a sufficiently large number of evacuees, all the evacuees 19 

may not arrive at Y at the same time, and it requests certain waiting time at Y before to 20 

start the bus assignment in 𝑁2. Those who are delivered to Y earlier will have compara-21 

tively more waiting time. Meanwhile, for the evacuees, waiting at Y is comparatively bet-22 

ter than to be at s. On the other hand, buses available at bus depot d request a certain time 23 

to be assigned to Y and are given by 𝝉𝒅𝒊. Hence the effective waiting time in N can be 24 

denoted by 𝛀 = 𝐦𝐚𝐱 {𝝎𝒊, 𝝉𝒅𝒊 }, for 𝝎𝒊 be the waiting at 𝒚𝒊 ∈ 𝒀. To address this, the objec-25 

tive function given for the BEPP can be modified. So, for 𝚻𝒎𝒂𝒙 the duration of evacuation 26 

overall vehicles under the constraint as in [5], the integrated evacuation planning problem 27 

can be reformulated as, 28 

Minimize 𝑇𝑚𝑎𝑥 ,(8) (8) 

Such that 𝑇𝑚𝑎𝑥 ≥ Ω + ∑ 𝜏𝑡𝑜 
𝑏𝑟 + 𝑟∈𝑅  ∑ 𝜏𝑏𝑎𝑐𝑘 

𝑏𝑟     ∀  𝑏 ∈ 𝐵 .𝑟∈𝑅  (9) (9) 

Problem 2. Given 𝑁 = (𝑠, 𝑑, 𝑉, 𝐴, 𝐸, 𝑢𝑎, 𝜏𝑎 , 𝜏𝑒 , 𝑍), having supplies and demands at s 29 

and Z, respectively. The integrated evacuation planning problem in a prioritized embed-30 

ding is to assign the vehicles for evacuees’ transshipment with minimum clearance time. 31 

 32 

Algorithm 2. Transit-vehicle assignment algorithm for minimum clearance time. 33 

Input: An embedded evacuation network 𝑁 = (𝑠, 𝑑, 𝑉, 𝐴, 𝐸, 𝑢𝑎 , 𝜏𝑎 , 𝜏𝑒 , 𝑍). 34 

1. In  𝑁1 = (𝑠, 𝑉, 𝐴, 𝑢𝑎,  𝜏𝑎, 𝑌), consider Y as the sinks and determine the earliest arrival of evacuees for 𝜏𝑎 = 0  35 

at different Y from s, by using Algorithm 1. 36 

2. Assign the transit-vehicles from d to 𝑁2 = ( 𝑑, 𝑌, 𝐸,   𝜏𝑒 , 𝑍) for the supplies provided by Step 1 at Y, as guided 37 

by the dominant vehicle assignment approach as in [7]. 38 

3. Stop, if all the supplies available at each of Y are fulfilled, respecting the capacity constraints of Z. 39 

4. Otherwise, return to Step 2.  40 

 Output: Transit-vehicle assignment with the minimum clearance time from 𝑠 →  𝑍. 41 

 42 
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5. An integrated prioritized evacuation system 1 

In a prioritized evacuation system as in [11,12],  evacuees are collected from the dis-2 

aster zone to the prioritized pickup locations of the primary sub-network in minimum 3 

time as the quickest transshipment by using the lex-max flow approach [13]. Considering 4 

such pickup locations as the sources, the available set of transit-buses are also assigned in 5 

the network to evacuate the evacuees safely to the sinks on a first-come-first-serve basis 6 

and is better-suited for the simultaneous flow of evacuees. Such an assignment is also 7 

carried in a dominating solution approach by adjusting the potential demands of the 8 

pickup locations to have minimum effecting waiting in the embedding. To have the quick-9 

est arrival of evacuees with partial arc reversals capability, we introduce a problem and 10 

design an algorithm as follows:  11 

Problem 3. Given an evacuation sub-network 𝑁1 = (𝑆, 𝑉, 𝐴,  𝑢𝑎, 𝜏𝑎 , 𝑌), with supplies 12 

at S, demands at Y, auxiliary nodes V, arc capacity  𝑢𝑎, and arc transit time 𝜏𝑎 for 𝑎 ∈ 𝐴. 13 

The quickest partial arc reversal transshipment problem is to find the quickest arrival of 14 

evacuees at Y with partial arc reversals capability.  15 

 16 

Algorithm 3. Quickest partial arc reversal transshipment algorithm. 17 

Input:  A dynamic sub-network 𝑁1 = (𝑆, 𝑉, 𝐴, 𝑢𝑎, 𝜏𝑎, 𝑌), with the supply and demand. 18 

1. Construct a transformed dynamic sub-network 𝑁1
̅̅ ̅ as in Equation (7). 19 

2. Solve the quickest transshipment problem [13] in the transformed network of Step 1.  20 

3. For each 𝜃 ∈ 𝐓 and reverse 𝑎′ ∈ 𝐴 up to capacity  𝑐𝑎 − 𝑢𝑎 if and only if 𝑐𝑎 > 𝑢𝑎, 𝑢𝑎 replaced by 0 whenever  21 

𝑎 ∉ 𝐴, in 𝑁1, where 𝑐𝑎 denotes the static 𝑠 − y flow value in each 𝑎 ∈ 𝐴 for such sub-network. 22 

4. For each 𝜃 ∈ 𝐓 and 𝑎 ∈ 𝐴, if 𝑎 is reversed, then 𝑘𝑎 = 𝑢�̅� – 𝑐𝑎′ and 𝑘𝑎′ = 0. If neither 𝑎 nor 𝑎′ is reversed, then 23 

𝑘𝑎 = 𝑢𝑎– 𝑐𝑎 where 𝑘𝑎 is saved capacity of 𝑎, [9].  24 

Output:  The quickest arrival of evacuees at 𝑌 in 𝑁1 with partial arc reversal capability. 25 

  26 

Theorem 2.  For the quickest partial arc reversal transshipment in 𝑁1, the quickest 27 

evacuee arrival problem can be computed in polynomial-time complexity via 𝑘 mini-28 

mum cost flow (MCF) computations in 𝑂( 𝑘(𝑀𝐶𝐹)(𝑚, 𝑛))  time, where 𝑀𝐶𝐹(𝑚, 𝑛) =29 

𝑂(𝑚 𝑙𝑜𝑔 𝑛 (𝑚 + 𝑛 log 𝑛)) in a network having n nodes and m arcs.        30 

Proof. Steps 1, 3, and 4 related to the arc reversal capability as in Algorithm 

3 are solved in linear time. So their time complexity is dominated by the 

time complexity of the computation of the quickest evacuee arrival in 𝑁1 

and is solved in polynomial-time in O( k(MCF)(m, n) where 𝑀𝐶𝐹(𝑚, 𝑛) =

𝑂(𝑚 log 𝑛 (𝑚 + 𝑛 log 𝑛)) in a network having n nodes and m arcs as in [14].                                                                                                   

□ 

(10) 

Transit-buses having uniform capacity 𝑄   are assigned from 𝑑 which are suffi-31 

ciently nearer to 𝑌 in 𝑁2   on the first-come-first-serve basis. Such assignment begins 32 

only after 𝛼1 ≥ Q for 𝛼1 be the number of evacuees arrived at the highest pickup de-33 

mand. For the subsequent assignments, the effective waiting instance 𝜓 is almost negli-34 

gible.  35 

Buses are assumed to pick up their full capacities. For this, the potential demands of 36 

the pickup locations are adjusted to be the integral multiple of busloads. Let the potential 37 

demand of the pickup location 𝑦𝑘 ∈  𝑌 be 𝛼(𝑦𝑘). For⎿ . ⏌be the floor function, the de-38 

mands can be adjusted to be 𝛼′(𝑦𝑘) by using the following demand adjustment.  39 

𝛼′(𝑦𝑘) = ⌊
𝛼(𝑦𝑘)+∑ [𝑘−1

𝑞=1 𝛼(𝑦𝑘)−𝛼′(𝑦𝑘)]

𝑄
⌋ . 𝑄 (10) (11) 
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But if the 𝒌𝒕𝒉 pickup location is the last one with the least priority, then it is taken 1 

as, 2 

   𝛼′(𝑦𝑘) = 𝛼(𝑦𝑘) + ∑   { 𝛼(𝑦𝑞) − 𝛼′(𝑦𝑞)} 𝑘−1
𝑞=1 (11)                            (12) 

Then the integrated evacuation planning problem, under the similar constraints as 3 

above, can be reformulated as ;  4 

Minimize      Τ𝑚𝑎𝑥  (12)                                                                                                                                                                                                                                (13) 

such that𝜏𝑚𝑎𝑥 ≥ 𝜓 + ∑ 𝜏𝑡𝑜 
𝑏𝑟 + 𝑟∈𝑅 ∑ 𝜏𝑏𝑎𝑐𝑘

𝑏𝑟  𝑟∈𝑅   ∀  𝑏 ∈ 𝐵, (13)                                                   (14) 

Constraint (13) needs Τ𝑚𝑎𝑥   to be greater than or equal to the maximum travel cost 5 

incurred by all buses and is to be maximized in (12).    6 

In an integrated approach, the quickest transshipment of the evacuees at Y in 𝑁1 in 7 

the form of lex-max dynamic flows with respect to the adjusted demands are assigned to 8 

the transit-buses in 𝑁2.  For this we introduce,                                                                                             9 

Problem 4. Given an evacuation network 𝑁 = (𝑆, 𝑉, 𝐴, 𝑢𝑎,  𝜏𝑎, 𝑌, 𝑑, 𝑢𝑒 , 𝜏𝑒  , 𝑍) 10 

having supplies and demands at s and Z respectively. The integrated evacuation planning 11 

problem in a prioritized embedding is to assign the vehicles for evacuees’ transshipment 12 

with minimum clearance time. 13 

 14 

Algorithm 4.  An integrated evacuation planning algorithm in a prioritized embedding. 15 

Input:  An embedding  𝑁 = (𝑆, 𝑉, 𝐴, 𝑢𝑎, 𝜏𝑎 , 𝑌, 𝑑, 𝑢𝑒  , 𝜏𝑒  , 𝑍), with given supply and demand.  16 

1. Consider  𝑁1 = (𝑆, 𝑉, 𝐴, 𝑢𝑎, 𝜏𝑎, 𝑌) having their pickup locations be 𝑌. 17 

2. Construct a priority ordering of 𝑌 assigning the highest priority to the nearest from  .   18 

3. Determine the arrival of evacuees at 𝑌 of 𝑁1 from 𝑆 using Algorithm 3. 19 

4. Assign the transit-buses from 𝑑 to 𝑌 in 𝑁2 = (𝑑, 𝑌, 𝑢𝑒  , 𝜏𝑒  ,   𝑍) for the supplies obtained in Step 3, to the near-20 

est sink 𝑍, on the first-come-first-serve basis.  21 

5. Begin the assignment with 𝛼1 ≥ 𝑄 for 𝛼1 be the collection of evacuees at 𝑌 provided by Equation (10).  22 

6. Stop, if all the supplies at each 𝑌 be fulfilled, respecting the capacity constraints of  .  23 

7. Otherwise, return to Step 4.    24 

Output:  Transshipment of evacuees finally to 𝑍 in minimum clearance time. 25 

  26 

6. Conclusions 27 

Different network structures, models, algorithms, and their solution strategies are 28 

integrated and extended to achieve the quickest transshipment of the evacuees in an inte-29 

grated network. Assignment of transit vehicles in such embeddings are carried out in 30 

domination solution approach for the minimum evacuation time.  31 

Corresponding to an integrated network topology, specific arrival patterns are con-32 

sidered in the collection network. In such network, we use the concept of partial arc re-33 

versals which is beneficial to increase the flow values of evacuees by decreasing their col-34 

lection time and is also favorable to have the minimum clearance time of the evacuees. 35 

The unused and saved arcs can be used for logistics and emergency facility. A prioritized 36 

primary network is considered to collect the evacuees in lex-max flow approach as the 37 

quickest transshipment and are assigned in the secondary sub-network in such prioritized 38 

embedding. It is better-suited and a novel approach for the simultaneous assignment with 39 

minimum delay in the embedding. 40 
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