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Abstract: The estimation of the seismic bearing capacity of strip footing is of paramount importance 10 

in geotechnical engineering. In case of a shallow strip footing above voids in heterogeneous soil, the 11 

assessment of its said bearing capacity turns out to display a complex dependency on various pa- 12 

rameters, linked to the geometry of the void and the properties of the soil. Recent research activities 13 

have highlighted that a methodology based on the combination of sensitivity analysis and machine 14 

learning can be extremely efficient in catching such a complex dependency. For the training of the 15 

ML technique, a database consisting of 38,000 Finite Element Limit Analysis (FELA) models has 16 

been adopted in this work. With the aim of estimating the mentioned seismic bearing capacity, five 17 

strategies have been investigated to select the training and test data. By considering the seismic 18 

bearing capacity as the single output parameter of the ML-based algorithm, and void depth and 19 

eccentricity, soil undrained shear strength and rate of change of its cohesion with the depth, and 20 

horizontal seismic acceleration as input parameters, the methodology has provided accurate results 21 

in mimicking the numerical, FELA-based reference solutions. 22 

Keywords: Machine Learning; Shallow strip footing; Seismic bearing capacity; Finite element limit 23 

analysis; Heterogeneous soil. 24 

 25 

1. Introduction 26 

The voids, especially in urban areas, may be located adjacent to or below shallow 27 

footings. The performance of strip footings can thus be significantly affected by the pres- 28 

ence of the underground voids, which therefore require special attention in the design 29 

process. Several factors can quantify the effects of the voids on the footing bearing capac- 30 

ity, and they all have to be considered simultaneously to achieve an optimal design. To 31 

date, various studies have been conducted to investigate the bearing capacity of strip foot- 32 

ings above voids, by using either theoretical or experimental methods, see e.g. [2-3, 4, 15- 33 

16, 28-29, 31, 37]. The Finite Element Limit Analysis (FELA) method has been recently 34 

adopted in [30], and design charts were obtained to estimate the ultimate bearing capacity 35 

of a strip footing over a rock mass with voids. In [36], the discontinuity layout optimiza- 36 

tion approach was used to determine the bearing capacity above square voids in cohesive- 37 

frictional soils, reporting typical failure patterns. The bearing capacity above multiple 38 

square voids was investigated in [21] for sandy soils and purely cohesive clays, also ex- 39 

ploring the effect of load inclination. Lately, in [34] the impact of seismic loading on the 40 

bearing capacity for an undrained clay with voids was addressed. 41 

In order to deal with complex problems, usually difficult to attack with a purely 42 

model-based approach, Machine Learning (ML) methodologies are currently finding a 43 
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market, also in the civil engineering field, see e.g. [9-11, 22, 25, 27]. Regarding foundation 44 

engineering, Neural Networks have been employed so far to estimate the settlement and 45 

the load-carrying capacity of pile foundations [8, 20, 23] and of isolated shallow footings 46 

[1, 5, 12, 19, 26]. 47 

In the present study, a first attempt has been made to define a properly designed 48 

database dealing with the various factors affecting the bearing capacity of strip footings 49 

above a single unsupported void in either heterogeneous or homogenous soils, under seis- 50 

mic and quasi-static excitations. Results have been obtained as bounds on the load bearing 51 

capacity of the strip footing via the FELA method. First, a sensitivity analysis has been 52 

conducted to quantify the effects of these parameters on the ultimate footing bearing ca- 53 

pacity. Next, to predict the seismic bearing capacity, the multiplayer perceptron (MLP) 54 

technique has been exploited. 55 

2. Problem definition 56 

In Figure 1, the (two-dimensional) geometry of the attacked problem is depicted. As- 57 

suming the strip footing and the tunnel to extend infinitely in the out-of-plane direction, 58 

plane strain conditions are adopted in the analysis. The strip footing is assumed rigid, 59 

featuring a rough contact with the heterogeneous soil. The following dimensionless vari- 60 

ables are adopted to parametrize the problem:  61 

- Horizontal seismic acceleration coefficient 𝑘ℎ, which is equal to the ratio between 62 

the horizontal earthquake-induced ground acceleration and the gravity acceleration. 63 

- Ratio 𝛼 = 𝑊/𝐵 between the void width 𝑊 and the foundation width 𝐵. 64 

- Ratio 𝛽 = 𝐻/𝐵 between the void height 𝐻 and the foundation width 𝐵. 65 

- Undrained shear soil strength 𝑐0/𝛾𝐵 at the ground level, where 𝑐0 is the cohesion 66 

of the soil and 𝛾 the soil specific gravity. 67 

- Rate of change 𝑘𝐵/𝑐0 of the cohesion 𝑐 = 𝑐0 + 𝑘𝑧 with the depth 𝑧. For a homoge- 68 

neous soil 𝑘 is null, whereas for heterogeneous soils 𝑘 is positive. 69 

- Internal friction angle 𝜑 of the soil in the drained state. 70 

- Depth 𝐷 = 𝑍/𝐻 of the void, where 𝑍 is the burial depth of the upper side (roof) of 71 

the void. 72 

- Eccentricity 𝑆 = 𝑋/𝐵 of the void, where 𝑋 is the horizontal distance of the center 73 

of the void from the centerline of the foundation. 74 

 75 

  

Fig 1. (a) Problem geometry, and (b) FELA mesh with a close-up depicting the adaptive refinement around the void. 76 

 77 

Accounting for all the parameters listed above, the dimensionless undrained seismic 78 

ultimate bearing capacity Q of a strip footing placed above the void is given according to 79 

the law: 80 

𝑄 =
𝑞𝑢

𝛾𝐵
= 𝑓 (

𝑐0

𝛾𝐵
,
𝑘𝐵

𝑐0

, 𝜑, 𝑆, 𝐷, 𝛼, 𝛽, 𝑘ℎ) (1) 

FELA analyses have been carried out to determine 𝑄 by means of the Optum G2 81 

software [17]. In the present analyses, a strip footing with a width 𝐵 = 1 m is placed on 82 
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a soil with a specific weight of 20 kN/m3. To avoid perturbations to the solution induced 83 

by the boundaries of the domain of the soil, a geometry with a width of 40𝐵 and a depth 84 

of 20𝐵 has been considered. A uniformly distributed load has been applied on the foot- 85 

ing, which has been assumed to grow until the formation of a collapse mechanism.  86 

The pseudo-static method has been used to determine the seismic performance of the 87 

foundation over the cavity. The value of the horizontal acceleration coefficient 𝑘ℎ  has 88 

been exploited, and once the upper and lower bounds on 𝑞𝑢 at collapse have been com- 89 

puted; the mean value between these two bounds has been then assumed as representa- 90 

tive for each model. An example of the adopted models is depicted in Figure 1, where the 91 

FELA adaptive mesh of the Optum G2 software, along with the adopted boundary condi- 92 

tions, are sketched. 93 

To validate the modeling approach, a comparison with the studies of [6-7, 13-14, 18, 94 

32-33, 35] has been made through the data gathered in Table 1. Such a comparison is pro- 95 

vided in terms of the bearing capacity factor, at a varying value of the internal friction 96 

angle 𝜑. The present results show a good agreement with those already published, and 97 

bound almost all of them. 98 

 99 

Table 1. Bearing capacity of the foundation, in terms of the capacity factor. 

𝜑 (°) 

𝑁γ 

Present study Yang 

et al. 
Booker Hansen Chen Michalowski Kumar Hjiaj et al. 

Zhao and 

Yang LB UB 

20 1.41 3.11 2.98 3.01 2.95 5.200 4.47 3.43 2.89 2.92 

25 3.55 7.07 6.75 6.95 6.76 11.40 9.77 7.18 6.59 - 

30 10.9 16.2 15.29 16.06 15.07 25.00 21.39 15.57 14.90 14.96 

35 25.4 37.8 35.73 37.13 33.92 57.00 48.68 35.16 34.80 - 

40 63.8 96.1 88.54 85.81 79.54 114.0 118.83 85.73 85.86 86.76 

3. Parametric Study 100 

A parametric analysis is discussed first. To evaluate the effect of the parameters listed 101 

in Section 2 on the seismic behavior of the system, a set of analyses has been run. The 102 

outcomes of this parametric analysis are next subdivided, to focus first on the parameters 103 

related to the soil behavior, and second on the parameters related to the geometry of the 104 

void. 105 

 106 

3.1 Soil Parameters 107 

Results in Figure 2 provide details regarding the variation of the dimensionless bear- 108 

ing capacity 𝑄 induced by the soil features, in case of different values of the horizontal 109 

seismic acceleration coefficient 𝑘ℎ. Figure 2(a) shows the outcome of the analysis for a 110 

broad range of values of the undrained shear strength. The graph shows that, for 𝑐0 𝛾𝐵⁄ < 111 

1, the model can be unstable: void collapse occurs without any loading and the value of 112 

𝑄 is close to zero (though it cannot be computed due to the model instability). Regarding 113 

the effect of 𝑘𝐵 𝑐0⁄  on the seismic and static bearing capacity of the footing, Figure 2(b) 114 

also shows that the bearing capacity increases slightly under seismic conditions but then 115 

it becomes independent of 𝑘𝐵 𝑐0⁄ . Results in Figure 2(c) finally show that, by increasing 116 

the angle of internal friction of the soil the bearing capacity of the strip footing increases 117 

too: for 𝜑 >30°, the bearing capacity keeps increasing sharply. 118 
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Fig. 2 Parametric analysis: effects on the bearing capacity 𝑄, under different values of the seismic acceleration coefficient 𝑘ℎ, of the 119 

dimensionless soil parameters: (a) 𝑐0 𝛾𝐵⁄ ; (b) 𝑘𝐵 𝑐0⁄ ; and (c) 𝜑. 120 

 121 

3.2 Void Parameters 122 

Results of the parametric analysis are depicted in Figure 3, in terms of the evolution 123 

of the bearing capacity due to the void parameters related to shape and location. At con- 124 

stant seismic action measured through 𝑘ℎ, the capacity 𝑄 is shown to increase with the 125 

void depth 𝐷, till a saturation value that depends on 𝑘ℎ; similar conclusions can be pro- 126 

vided by considering the horizontal distance S from the footing central line. It is also re- 127 

ported that the bearing capacity decreases if the ratio 𝛼 linked to the void width in- 128 

creases, with instability for a value approaching 𝛼 = 3. For a void located below the mid- 129 

line of the footing, the ratio 𝛽 related to the void height is shown to marginally reduce 130 

the bearing capacity, and then to attain a constant value.  131 

 132 
Fig. 3 Parametric analysis: effects on the bearing capacity 𝑄, of the dimensionless void parameters: (a) 𝛼; (b) 𝛽; (c) 𝑆; and (d) 𝐷. 133 

4. Machine learning techniques 134 

To learn the seismic bearing capacity of shallow strip footing above the void, a non- 135 

linear MLP algorithm has been adopted. The database to study is thus characterized by 136 

eight input parameters (𝑐0 𝛾𝐵⁄ , 𝑘𝐵 𝑐0⁄ ,𝐷, 𝑆, 𝛼, 𝛽, 𝜑, and 𝑘ℎ) and only one output value 137 

(𝑄 = 𝑞𝑢 𝛾𝐵⁄ ). A description of the adopted methodology is provided here, along with the 138 

impact of the relevant hyperparameters that control the learning process on the MLP per- 139 

formance.  140 

MLP is a class of artificial neural networks (ANNs) and is an evolution of the percep- 141 

tron neural network, see [24]. MLP is able to provide a nonlinear map ℝ𝑘 ⟶ ℝℎ, in case 142 

of an input layer made of 𝑘 neurons (input values) and an output layer made of ℎ neu- 143 

rons (output values). It consists of an arbitrary number of hidden layers, with a variable 144 

number of neurons; the neurons are storage cells for scalar values, obtained by an activa- 145 

tion function applied to the neuron values coming from the previous layer. 146 

For our problem, a preliminary analysis has been performed to identify the optimal 147 

MLP architecture, in terms of number of neurons in the hidden layers to describe at best 148 
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the correlation between input and output. In this regard, one-hidden-layer and two-hid- 149 

den-layer ANNs have been investigated. Figure 4 provides a comparison among the be- 150 

haviors of all the architectures allowed for, at the end of training. Results are reported in 151 

terms of the root mean square error (RMSE), given by: 152 

RMSE = √
1

𝑛
∑(𝑄𝑂𝐺2 𝑖 − 𝑄𝑀𝑜𝑑𝑒𝑙 𝑖)

2

𝑛

𝑖=1

 (2) 

which represents the so-called loss function to be minimized during the training. In Eq. 153 

(2): 𝑛 is the total number of data; for each analysis, 𝑄𝑂𝐺2 𝑖 is the load bearing capacity 154 

obtained with the Optum G2 software, while 𝑄𝑀𝑜𝑑𝑒𝑙 𝑖 is the value estimated by the MLP.  155 

 156 

 157 
Fig. 4 Dependence of the RMSE at the end of training on the total number of neurons in the ANN, in case of either one or two hidden 158 

layers.  159 

To assess the effects of the hyperparameters on the accuracy of the results, the plot 160 

shows the final value of RMSE as a function of the total number of neurons. The continu- 161 

ous line represents the solution obtained with one hidden-layer ANN; the dashed lines 162 

represent instead the solutions for the two hidden-layer ANNs, and for each of them a 163 

further label stands for the number of neurons in the second hidden layer. Each solution 164 

here has been computed as the average of ten repetitions of the training, to also assure 165 

robustness against stochastic effects. 166 

What turns out from this additional parametric analysis is that the ANN featuring 167 

one hidden-layer only provides the best performances. For a number of neurons larger 168 

than 20 there is a marginal improvement in the accuracy of the results. Accordingly and 169 

to also minimize the computational costs of the entire procedure, the 8-20-1 ANN archi- 170 

tecture has been adopted in the following. 171 

 172 

5. Results and discussion 173 

The performances of the selected MLP are now discussed. As metrics for them, the 174 

following statistical indices have been adopted to measure the discrepancy between the 175 

observed and the predicted values of the seismic load bearing capacity: 176 

R2 =

[
 
 
 
∑(𝑄𝑂𝐺2 𝑖 − 𝑄𝑂𝐺2

̅̅ ̅̅ ̅̅ )(𝑄𝑀𝑜𝑑𝑒𝑙 𝑖 − 𝑄𝑀𝑜𝑑𝑒𝑙
̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑛

𝑖=1

√∑(𝑄𝑂𝐺2 𝑖 − 𝑄𝑂𝐺2
̅̅ ̅̅ ̅̅ )2

𝑛

𝑖=1

∑(𝑄𝑀𝑜𝑑𝑒𝑙 𝑖 − 𝑄𝑀𝑜𝑑𝑒𝑙
̅̅ ̅̅ ̅̅ ̅̅ ̅)2

𝑛

𝑖=1

⁄

]
 
 
 
2

 (3) SI = RMSE 𝑄𝑂𝐺2
̅̅ ̅̅ ̅̅⁄  (4) 
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MAPE =
1

𝑛
∑|𝑄𝑂𝐺2 𝑖 − 𝑄𝑀𝑜𝑑𝑒𝑙 𝑖| 𝑄𝑂𝐺2 𝑖⁄

𝑛

𝑖=1

 (5) BIAS =
1

𝑛
∑(𝑄𝑂𝐺2 𝑖 − 𝑄𝑀𝑜𝑑𝑒𝑙 𝑖)

𝑛

𝑖=1

 (6) 

In the equations here above R2, MAPE, SI, and BIAS are the coefficient of determination, 177 

the mean absolute percentage error, the scatter index, and the standard bias; besides them, 178 

the RMSE introduced above has been adopted too. The index 𝑖 = 1,… , 𝑛 runs over the 179 

instances in the dataset; QOG2 i is the numerical value of the dimensionless load bearing 180 

capacity furnished by the Optum G2 software, while 𝑄𝑀𝑜𝑑𝑒𝑙 𝑖 is the corresponding value 181 

provided by the trained ML tool; the overbar means that the average value of the corre- 182 

sponding variables is allowed for. 183 

Table 2 gathers the values of all the aforementioned statistical indices to assess the 184 

performance of the MLP. It can be seen that MLP is accurate in catching the structural 185 

response, as shown by the values of R2, RMSE, SI, and BIAS. The same trend is depicted 186 

in the parity plots of Figure 5, where the estimations of the seismic bearing capacity of the 187 

shallow strip footing are compared with the ground-truth data. The output provided by 188 

MLP is well aligned with the perfect fit, represented by the bisector of the quadrant.  189 

 190 

Table 2. Performance of MLP, in terms of the adopted statistical indices. 

Algorithm R2 RMSE MAPE SI BIAS 

MLP 0.9955 0.0158 -0.0101 -0.0189 -0.0001 

 191 

 192 
Fig. 5 Parity plots showing the MLP output against the corresponding ground-truth data linked to: (a) all the data; (b) test data; (c) 193 

validation data. 194 

 195 

The accuracy of the results has been also investigated through a comparison between 196 

the FELA and the foreseen seismic bearing capacity of the shallow strip footing, see Figure 197 

6. For this comparative visualization only, 1% of the instances in the dataset has been ran- 198 

domly selected to provide a clearer vision of the quality of data fitting. The seismic bearing 199 

capacity computed by MLP matches quite well the FELA counterpart, with a bounded 200 

scattering in accordance with the results of Figure 5. 201 

 202 
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 203 
Fig. 6 Comparison between the FELA results and those forecasted by the MLP. 204 

6. Conclusion 205 

In this study, the seismic bearing capacity of a strip footing placed over an unsup- 206 

ported void has been studied by means of a data-driven approach. Dimensionless factors 207 

describing the horizontal seismic acceleration, the soil strength and heterogeneity, the in- 208 

ternal friction angle of the soil, the shape, size, depth, and eccentricity of the void have 209 

been all accounted for. A MLP has been adopted to estimate the mentioned bearing ca- 210 

pacity. The hyperparameters affecting the performance of the MLP have been optimized 211 

in order to maximize the accuracy of the solution. The results obtained by training the 212 

MLP have shown a good fitting of the seismic bearing capacity computed with time-de- 213 

manding numerical FELA simulations, handled in the present study as ground-truth data.  214 

Only rectangular voids have been considered here. Having established the accuracy 215 

of the proposed methodology, additional data will be handled in future activities to allow 216 

for voids with different geometries, in order to generalize the procedure and make it void 217 

shape-independent. 218 
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