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Abstract: In this work, we exploit supervised machine learning (ML) to investigate the relationship 9 
between architectural form and structural efficiency under seismic excitations. We inspect a small 10 
dataset of simulated responses of tall buildings, differing in terms of base and top plans within 11 
which a vertical transformation method is adopted (tapered forms). A diagrid structure with mem- 12 
bers having a tubular cross-section is mapped on the architectural forms, and static loads equivalent 13 
to the seismic excitation are applied. Different ML algorithms, such as kNN, SVM, Decision Tree, 14 
Ensemble methods, discriminant analysis, Naïve Bayes are trained, to classify the seismic response 15 
of each form on the basis of a specific label. Presented results rely upon the drift of the building at 16 
its top floor, though the same procedure can be generalized and adopt any performance character- 17 
istic of the considered structure, like e.g. the drift ratio, the total mass, or the expected design weight. 18 
The classification algorithms are all tested within a Bayesian optimization approach; it is then found 19 
that the Decision Tree classifier provides the highest accuracy, linked to the lowest computing time. 20 
This research activity puts forward a promising perspective for the use of ML algorithms to help 21 
architectural and structural designers during the early stages of conception and control of tall build- 22 
ings. 23 

Keywords: Supervised Machine Learning; Classification; Tall Building; Architectural Form; Struc- 24 
tural Efficiency. 25 
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1. Introduction 28 
Architects and designers have always been curious about building novel forms, 29 

though there were lots of restrictions for exploring complex forms. While in some cases 30 
there are less limitations in the design, on other occasions engineering fields dictate many 31 
considerations, for example in the case of tall buildings, which represent one of the most 32 
complicated design processes [1]. Tall buildings are an outstanding architectural produc- 33 
tion and require amazing resources with immense expenses due to their large scale. Since 34 
they became nowadays more sophisticated, it is essential to feature suitable and efficient 35 
structural configurations. Design teams are currently looking for specialists with a 36 
knowledge about efficient, or optimal structural design [2]. The entire design process also 37 
requires a close collaboration between architects and engineers, who look for a software 38 
that provides them clear requirements for the architectural form and identifies the alter- 39 
native with the highest structural efficiency and, at the same time, provides a portfolio of 40 
different options. Such a software might help contractors and clients to reduce the total 41 
costs of construction [2], since about one third of the total expenses are related to the struc- 42 
ture; accordingly, structural considerations should be allowed for in the early stage of the 43 
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design process [3]. Although the early-stage design phase is a negligible part of the whole 1 
design process, it thus plays a relevant role in the whole procedure, see [4]. In our modern, 2 
smart-city age, the design of tall buildings has become the outcome of the close teamwork 3 
of architects, structural and mechanical engineers that resulted in a considerable effi- 4 
ciency. By the advance of technology and the constructability of complex forms, the struc- 5 
tural efficiency may fade and, even more regrettably, it can lead to depleting the Earth 6 
resources in case of an inefficient use of materials load bearing capacity [5]. In the contem- 7 
porary tall building design approach, structural considerations are not fully taken into 8 
account, till when the architectural form is appropriately generated; this procedure com- 9 
pels the structural intervention to fix the single, individual problem rather than really in- 10 
tegrating the structural model into the initial architectural form. Since the design process 11 
in the early-stage is so critical, a workflow should be utilized to assure that all aspects are 12 
considered simultaneously, see e.g. [6-7]. Moreover, architects should simultaneously 13 
consider various design objectives, including structural efficiency, since the 80% of the 14 
consumption of construction materials is defined at this stage. 15 

Some researchers investigated the relation of architecture and structural efficiency 16 
for tall buildings [8]. On some occasions, it was claimed that hyperboloid form has better 17 
structural efficiency in comparison to the cylindrical form. Others also considered the ef- 18 
fect of the architectural form on the structural efficiency, the investigation resting on dif- 19 
ferent, alternate geometries [9-12, 17, 18]. 20 

Within the frame of a parametric design paradigm, all the design features such as 21 
form, can be modified at any time during the design process [13]. In the so-called compu- 22 
tational design approach, a steady capability to create complex models in terms of form is 23 
pursued; with this approach, ordinary structural modeling performances are supplied 24 
through a simulation tool, to cope with the problem complexity and speed up requirement 25 
compliance: several alternatives can be thus adopted in the current model of a building at 26 
a glance [13]. It turns out that parameters that define the architectural and structural com- 27 
ponents of the model, are flexible and can be adjusted on the fly. 28 

There is currently a lack of research activities regarding the application of ML in the 29 
field of architecture. For example, in [14] ML was adopted to generate non-conventional 30 
structural forms that can be classified as objectives or subjective of the design product. ML 31 
indeed provides the designer with an insight on the structural efficiency of the solutions 32 
[15]. Alternatively, artificial intelligence has been exploited to add more creativity to the 33 
design process, e.g. by using a variational autoencoder in a design framework: the algo- 34 
rithm generates some samples and then a the autoencoder can start training the model. 35 

In this work, we focus on the use of ML tools to learn the link between the outer 36 
shape of tall buildings, their load bearing frame and the overall capacity to resist earth- 37 
quake excitations. Different algorithms are trained by exploiting a rather small dataset of 38 
results regarding the response of buildings of different shapes excited by a seismic-like 39 
loading, and a comparison in provided in terms of their efficiency to get trained and their 40 
capability to provide accurate surrogates of the real structures. 41 

2. Proposed methodology  42 
The present approach consists of three stages: i) architectural form generation; ii) 43 

structural analysis; and iii) supervised ML. Out of these three stages, only the last one 44 
provides novelties, since it addresses the question as to whether it would be possible to 45 
obtain accurate surrogates within a ML-based process. It was indeed time consuming to 46 
generate all the architectural forms, and then build the structural model for all the consid- 47 
ered 144 forms, apply loads, and finally carry out the structural analysis. For example, if 48 
only a part of the 144 forms would be investigated for modelling and training the ML tool, 49 
the result for the remaining part of the dataset could be generated automatically. The main 50 
goal of this research is so to apply ML on the aforementioned problem or, more precisely, 51 
to find an optimal case-dependent classification algorithm. 52 

 53 
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2.1. Architectural Form Generation 1 
The architectural form of a tall building has been interpreted here as a top and bottom 2 

plan and a vertical transformation method consisting of morph, twist, or a curvilinear 3 
transformation, see [16]. A set of 144 different architectural forms of tall buildings has 4 
been generated. Top and base plans could be varied within 3,4,5,6,7,8,9,10,11,12,13 or 24 5 
sided polygons. This process exploited Rhinoceros™ and Grasshopper™, thanks to their 6 
powerful parametric tools. In next step, a diagrid (tubular) structure has been designed, 7 
sharing pinned joints with intermediate concrete floor slabs carrying only dead load. A 8 
seismic load has been then applied to the center of mass of each concrete floor, according 9 
to a statical equivalent method, see [17] for details. Finally, a structural analysis was car- 10 
ried out in Karamba™, a parametric structural analysis plug-in for Grasshopper™. In Fig- 11 
ure 1, a part of the 144 mentioned tall buildings is shown including both the architectural 12 
and the structural models. 13 

 14 

Figure 1. Sketch of 36 out of 144 generated architectural forms, with the diagrid structural model 15 
visible on the building skin. 16 

 17 

Figure 2. Colored diagram of the drift response computed for all the analyzed models. 18 

2.2. Structural Results 19 
After having analyzed all the considered building forms, a spreadsheet summarizing 20 

the structural behavior of the models has been filled in. Parameters characterizing the 21 
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structural response such as drift, total weight, maximum normal forces, maximum utili- 1 
zation have been investigated to compare all the models. A graph, showing the top and 2 
base plan of each form, with a color representing the range of the structural parameter of 3 
interest, results insightful to compare the outcomes at a glance. Figure 2 shown such a 4 
graph in relation to the drift, for all the generated models. According to it, the green color 5 
qualitatively represents the tall buildings which are characterized by a lower drift, while 6 
the red color shows the tall buildings featuring a higher drift. It can be seen that, by in- 7 
creasing the side number of plans the structural efficiency is improved, and forms located 8 
along the diagonal blue lines in the figure mostly have similar structural behavior [18]. It 9 
is however difficult to foresee the behavior of a single (variant) form without retracing all 10 
the mentioned stages of the analysis. Hence, ML could help in recognizing the patterns in 11 
such a representation of the results. 12 
2.3 Supervised Machine Learning- A classification approach 13 

While it is possible to explore the structural outcomes for all the models manually, it 14 
results profitable to do it automatically by means of a supervised ML approach. In this 15 
work, a small data set has been considered: out of the 144 architectural forms, 75% (108 16 
forms) have been used for training, and 25% percent (36 forms) have been instead used 17 
for testing. First, a randomization algorithm has been applied to split the dataset into the 18 
training and testing sets, without any bias. The next step has been to define a label for data 19 
classification: as already mentioned, in tall buildings an important factor is represented 20 
by the drift, i.e. the horizontal displacement of top floor [19]; several standards define a 21 
limit for it, like e.g. 1/500 height of the building height. A qualitative label has been defined 22 
for the drift, exploiting its values ranging from a minimum of 34 cm to a maximum of 158 23 
cm within the dataset. Tall buildings whose drift was near 34 cm have been considered 24 
“very good” in their structural behavior; a drift increase would be linked to a diminished 25 
structural efficiency. Five classes have been then defined for data classification (0: very 26 
bad, 1: bad, 2: not bad not good, 3: good, 4: very good). In Figure 3, all the five classes are 27 
shown for the whole data, in case the drift is represented against the total weight of the 28 
structure; similar representations can be obtained with all the other indices, though the 29 
trend might not show up so clear in the graph. We anticipate that good classification re- 30 
sults are obtained if this label is chosen. It can be also understood that, by increasing the 31 
total weight the drift decreased, as it leads to a stiffer structure and, accordingly, to a 32 
smaller displacement or drift under the selected excitation. 33 

 34 
Figure 3. Representation of the structural response in terms of drift against the total mass, and of 35 
the five classes defined on the basis of the drift as a label. 36 

Another possible strategy would be to categorize the forms according to the base plan 37 
geometry. In this additional case, twelve labels have been defined by considering the sides 38 
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or vertices of the polygons (i.e. 3,4,5,6,7,8,9,10,11,12,13,24 sided polygons). In this case the 1 
classification algorithms have performed rather badly, with no remarkable results. 2 
2.4. Classification algorithms and hyperparameter optimization 3 

5-fold cross validation has been applied to guarantee lack of overfitting and eight 4 
predictors have been considered. After assigning the label, the following six classification 5 
algorithms have been adopted in the MATLAB classification learner toolbox: k-nearest 6 
neighbors; support vector machine; decision tree; ensemble method; discriminant analy- 7 
sis; and Naïve Bayes. Instead of tuning each classification algorithm parameter manually, 8 
it would be better to define them within an optimization process. We have inspected three 9 
types of optimizations [20]: grid search, random search, and Bayesian optimization. 10 

Each of these optimization approaches has a specific property, see e.g. [20] for further 11 
details. The Bayesian optimization approach has been used because it can lead to better 12 
results in a shorter time and through fewer iterations; moreover, it is the only approach 13 
that efficiently exploits the iteration results according to the Bayes rule. In Figure 4, the 14 
Bayesian optimization is showed for the kNN algorithm, for 50 iterations: at iteration 35 15 
the optimum result has been already attained, with a minimum classification error of 16 
about 12.5%, so with an accuracy for the training dataset of 87.5%. The four tuned hy- 17 
perparameters of kNN are also reported in the graph. 18 

 19 
Figure 4. Example of Bayesian optimization of the ML hyperparameters, and relevant results. 20 

3. Results of the ML classification 21 

First, it has been tested whether supervised ML classification can be used in this case 22 
study. By means of a very simple implementation of the kNN algorithm, the accuracy for 23 
training has resulted to be 91.7%, while the accuracy for testing has been 83.3%. It has been 24 
thus proved that the classification algorithm can correctly predict the structural response 25 
of tall buildings, in case the label is appropriately chosen. According to the confusion ma- 26 
trix for training and testing depicted in Figure 5, it can be understood that each class does 27 
not have the same number of observations (represented by the numbers in the matrices). 28 
Via the kNN classifier, 4 observations have been misclassified in the training dataset, and 29 
11 in the testing dataset. Another important note is that all observations related to class 1 30 
are completely misclassified; this is due to the fact that, in the training dataset, there are 31 
no data associated to this class, and the ML model cannot be trained appropriately. Such 32 
results occurred for this specific randomization, and it may vary from one randomization 33 
to another of the same set. It is therefore claimed to be a drawback of the procedure, 34 
mainly linked to the small dataset. 35 
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Figure 5. Confusion matrix relevant to the kNN classification algorithm: (a) training dataset, (b) 2 
testing dataset. 3 

In what follows, a brief account of the results achieved with the six different classification 4 
algorithms is provided. 5 
3.1. k-nearest neighbors 6 

kNN [21] results depend on i) the number of neighbors allowed for in the state space, 7 
ii) the metric to measure the distance between neighbors, and iii) a weight for the meas- 8 
ured distances. In this research an optimization method was adopted to reach the maxi- 9 
mum accuracy, by changing the hyperparameters, by enabling or disabling a principal 10 
component analysis (PCA) of the data [22], and by using random search and grid search, 11 
instead of Bayesian optimization. A range 1-54 was defined for k, and a variety of distance 12 
metrics have been adopted. The accuracy has been ranging from 80% to 91.7% for training, 13 
and from 94.4% to 97.2% for testing; the computing time was instead ranging from 16.3 s 14 
to 64.6 s. 15 
3.2. Support vector machine 16 

In comparison to kNN, support vector machine (SVM) consumes a considerable 17 
amount of time for the computation, as it originally works with binary classes; multiple 18 
classes are treated as several combinations of binary ones [23]. Four kernel functions have 19 
been adopted, namely the Gaussian, linear, quadratic, cubic ones, which are related to the 20 
kind of support vector classifiers. There is a kernel scale feature, and the multi class 21 
method could be one-vs-one, or one-vs-all; the one-vs-one method has turned out to pro- 22 
vide more accurate results, though can be very time consuming. The accuracy has finally 23 
ranged from 94.4% to 97.2% for training, and from 94.4% to 97.2% for testing; the compu- 24 
ting time has varied from 134 s to 250 s.  25 
3.3. Decision tree 26 

Decision tree works with the number of splits, and a criterion for them [24]. The num- 27 
ber of splits has been varied from 1 to 107; the criterion for split has been selected among 28 
the Gini's diversity index, Twoing rule, maximum deviance reduction. The computing 29 
time has varied from 17.4 s to 45 s, the accuracy from 86.1% to 93.5% for training, and from 30 
77.8% to 100% for testing. The accuracy for testing of four models out of the five consid- 31 
ered has attained the 100% result. It has thus resulted the best classification algorithm. 32 
3.4. Ensemble classifier 33 

The ensemble classifier algorithm exploits several learning algorithms to reach a final 34 
prediction [25]. One of the most famous ensemble classifiers is the bootstrap aggregating 35 
(Bagging) one. In this work, the ensemble method has been selected among Bag, Ada- 36 
Boost, RUS Boost, and the maximum spilt has been varied from 1 to 107. The number of 37 
learners has changed from 10 to 500, the learning rate ranged from .001 to 1m, and the 38 
number of predictor samples from 1 to 8. The computing time varied from 72 s to 129.4 s, 39 
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with an accuracy from 85.2% to 98.1% for training, and from 94.4% to 100% for testing. 1 
After the decision tree, ensemble turns out to be the best possible classification algorithm. 2 
3.5. Naïve Bayes 3 

Naïve Bayes classifier works within a stochastic frame [26], by applying the Bayes 4 
theorem. This algorithm features only two hyperparameters: distribution type, and kernel 5 
type. Specifically, the kernel type can be one out of Gaussian, Box, Epanechnikov, Trian- 6 
gular ones. The computing time varied from 13.7 s to 109.7 s, with an accuracy for training 7 
from 82.4% to 92.6%, and from 83.3% to 91.7% for testing. 8 
3.6. Discriminant analysis 9 

A discriminant classifier assumes that different classes produce data according to 10 
different Gaussian distributions [27]. The only model hyperparameter to select is the dis- 11 
criminant type, which can be linear, quadratic, diagonal linear, or diagonal quadratic. In 12 
this case, the computing time varied from 45.3 s to 48.7 s, and the accuracy from 85.2% to 13 
94.4%, and from 83.3% to 91.7% for training and testing, respectively. 14 

 15 
For the sake of brevity, all the results are not directly compared here. A detailed anal- 16 

ysis, in terms of accuracy and computational costs to go beyond the brief account pro- 17 
vided here above, is going to be given in the conference presentation. Readers are there- 18 
fore directed to it for a thorough discuss on the efficiency of the adopted ML tools. 19 

4. Conclusion 20 
In this work, the relation between architectural form and structural efficiency of tall 21 

buildings has been studied via a data-driven approach. Several architectural and struc- 22 
tural model generation methods could be used to get insights into which architectural 23 
detail or modification may increase the structural efficiency, moving in the direction of 24 
morphing or smart structures. A novel view has been provided by adopting machine 25 
learning tools to learn the links between shape and structural response under seismic ex- 26 
citations, by also reducing the computing time: a sample dataset has been used to predict 27 
the performance of new architectural forms of tall buildings. 28 

It has been proven that supervised machine learning can be successfully applied to 29 
this case study. Moreover, among the six investigated classification algorithms, even 30 
though each of them provides advantages and disadvantages, the ensemble and the deci- 31 
sion tree classifier algorithms have attained the best results.  32 
 33 
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