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Abstract
In this work, we exploit supervised machine learning (ML) to investigate the relationship 
between architectural form and structural efficiency under seismic excitations. We inspect a 
small dataset of simulated responses of tall buildings, differing in terms of base and top plans 
within which a vertical transformation method is adopted (tapered forms). A diagrid structure 
with members having a tubular cross-section is mapped on the architectural forms, and static 
loads equivalent to the seismic excitation are applied. Different ML algorithms, such as kNN, 
SVM, decision tree, ensemble, discriminant, Naïve Bayes are next trained, to classify the 
seismic response of each form on the basis of a specific label. Results to be presented rely 
upon the drift of the building at its top floor, though the same procedure can be generalized 
and adopt any performance characteristic of the considered structure, like e.g., the drift ratio, 
total mass, or expected design weight. The classification algorithms are all tested within a 
Bayesian optimization approach; it is then found that the decision tree classifier provides the 
highest accuracy, linked to the lowest computing time. This research activity puts forward a 
promising perspective for the use of ML algorithms to help architectural and structural 
designers during the early stages of conception and control of tall buildings.

Keywords: Supervised Machine Learning; Classification; 
Tall Building; Architectural Form; Structural Efficiency
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Introduction
Problem definition

• Investigate the effect of architectural form (top and bottom plan) on structural efficiency of 
tall buildings by means of ML

The importance

• Generating new data needs a huge amount of effort for structural and                      
architectural modelling, ML could make it simpler!

• Early-stage design phase plays a critical role in tall buildings; 
it will be aided by powerful ML tools Source: https://en.wikipedia.org
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Introduction
Objectives 

• Comparison between efficiency of some classification algorithms

• Investigate the structural efficiency and  architectural form relation by ML tools 

Function

• Propose an advanced workflow for architects and engineers in tall building design

Tools

• Parametric modelling for architectural and structural analysis: Rhino, Grasshopper, Karamba

• Matlab for ML (classification learner app)

Source: https://en.wikipedia.org
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Methodology

Generating 
architectural forms

Mapping structural 
patterns and apply 

loads

Applying 
classification 
algorithms

Comparing the 
algorithms
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Architectural forms 12*12 (144 forms)
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Classification parameters

Number of 
observations

Number of 
predictors

Label

144 8
Drift response 

0-5

Very Good 4
Good 3

Mediocre 2
Bad 1

Very Bad 0

Drift diagrams for 144 models
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Training & Testing
• Total data: 144 models

• Training: 108    Testing: 36 (75% to 25%)

• Randomization

• Response: labels according to drift (0-4)

• Predictors: 7

• First Testing on kNN algorithm

• Number of neighbors=5

• Accuracy rate training: 91.67

• Accuracy rate testing: 83.33
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Classification Algorithms 

Model specification

• Label: drift (5 classes)

• 5 fold cross validation

• 108 observations (75% of 144 
models)

• 8 predictors

KNN

Decision Tree

Ensemble

Discriminant

SVM

Naïve Bayes
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Hyperparameter 
optimization

Grid search

Random search

Bayesian 
optimization
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Number of 
Neighbors

Distance Metric Distance Weight
Standardize 

Data

1-54

City block
Chebyshev
Correlation

Cosine
Euclidean
Hamming

Jaccard
Mahalanobis

MinkowsKi (cubic)
Spearman

Equal
Inverse

Squared inverse

True
False 

Hyperparameter search range

Optimizable k-Nearest Neighbor
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Optimizable k-Nearest Neighbor

Mode
l No.

Accuracy
Training

Accuracy
Testing

Total 
Misclass.

cost

Training
time

Number of 
Neighbors

Distance 
Metric

Distance 
Weight

Standardize 
Data

Optimizer
Acquisition

Function
Iteration Feature selection PCA

1 91.7 94.4 9 38.1 2
City block

Squared
inverse True Bayesian

Expected 
Improvement 

per second plus
30 all Disabled

3 91.7 94.4 9 15.9 2 City block inverse True
Random 
search

30 all Disabled

8 91.7 97.2 9 64.5 9 City block
Squared
inverse

True Bayesian
Expected 

Improvement 
per second plus

50 all Disabled

9 91.7 94.4 9 121.13 1 City block inverse True
Grid 

search
Grid 

Div.=10
all Disabled

10 88 97.2 13 55.9 54
Mahalanobi

s
Squared
inverse

false Bayesian
Expected 

Improvement 
per second plus

50 all
95% 

Variance
1 kept off

16 88 97.2 13 54.3 15 Euclidean
Squared
inverse

false Bayesian
Expected 

Improvement 
per second plus

50

1. Model No
2. Total length of 

Diagrid Members
3. Max Normal Force

95% 
Variance
1 kept off

17 96.3 97.2 4 46.3 3 City block
Squared
inverse

True Bayesian
Expected 

Improvement 
per second plus

50

1. Model No
2. Total length of 

Diagrid Members
3. Max Normal Force

Disabled
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Bayesian optimization sample
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Kernel 
Function

Kernel Scale
Box Constraint 

Level
Multi Class 

Method
Standardize 

Data

Gaussian
Linear

Quadratic
Cubic

0.001-1000 0.001-1000 
One-vs-All

One-vs-One
True
false 

Hyperparameter search range

Optimizable Support Vector Machine
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Optimizable Support Vector Machine

Model 
No.

Accuracy
Training

Accuracy
Testing

Total 
Misclass.

cost

Training
time

Kernel 
Function

Kernel 
Scale

Box 
Constraint 

Level

Multi Class 
Method

Standardize 
Data

Optimizer
Acquisition

Function
Iteration Feature selection PCA

1 95.4 94.4 5 134.6 Gaussian 15.96 984.48 
One-vs-

One
True Bayesian

Expected 
Improvement 

per second plus
40 all Disabled

2 95.4 94.4 5 2030 Linear 10
One-vs-

One
True

Grid 
search

Grid 
Div.=10

all Disabled

3 95.4 97.2 5 223.5
Linear

2.14
One-vs-

One
True

Random 
Search

40 all Disabled

4 95.4 94.4 5 139.8
Linear

301.08
One-vs-

One
True Bayesian

Expected 
Improvement 

per second plus
40 all Disabled

5 95.4 97.2 5 139.8
Quadrati

c
133.56

One-vs-
One

True Bayesian
Expected 

Improvement 
per second plus

40

1. Model No
2. Total length of 

Diagrid Members
3. Max Normal Force

Disabled

6 86.1 97.2 15 137.8
Gaussian

.12 966.23
One-vs-All

True Bayesian
Expected 

Improvement 
per second plus

40 all
95% 

Variance
1 kept off

7 91.7 97.2 9 152.9 Linear 99.79
One-vs-

One
True Bayesian

Expected 
Improvement 

per second plus
40 all 5 kept off
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Optimizable Decision Tree

Maximum Number of Splits Split Criterion

1-107
Gini's diversity index

Twoing rule
Maximum deviance reduction

Hyperparameter Search Range
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Optimizable Decision Tree

Model 
No.

Accuracy
Training

Accuracy
Testing

Total 
Misclassification

cost

Training
time

Maximum 
Number of 

Split

Split 
Criterion

Surrogate 
Decision 

Split
Optimizer

Acquisition
Function

Iteration Feature selection PCA

2 93.5 100.0 7 29.7 5
Twoing

rule
Bayesian

Expected 
Improvement 

per second 
plus

40 all Disabled

5 93.5 100.0 7 17.4 4

Gini's 
diversity 

index

On, 
using 

max 10 
surrogat

e

Random 
Search

40 all Disabled

6 93.5 100.0 7 18.8 7

Gini's 
diversity 

index
Find all

Random 
Search

40 all Disabled

9 86.1 77.8 15 30.76 42
Gini's 

diversity 
index

Find all
Random 
Search

40 all
95% 

Variance
1 kept off

11 93.5 100.0 7 45.0 5
Gini's 

diversity 
index

off
Random 
Search

40
1. Model 

No
Disabled
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Optimizable Ensemble
Hyperparameter Search Range

Ensemble 
method

Maximum 
number of 

splits

Number of 
learners

Learning rate
Number of 

predictors to 
sample

Bag
AdaBoost
RUSBoost

1-107 10-500 0.001-1 
1-8 
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Optimizable Ensemble

Model 
No.

Accuracy
Total 

Misclassification
cost

Training
time

Ensemble 
method

Maximum 
number of 

splits

Number 
of 

learners

Learning 
rate

Number of 
predictors to 

sample
Optimizer

Acquisition
Function

Iteration Feature selection PCA

1 98.1 2 123.3
RUSBoos

t 38 71 .94 Select All Bayesian
Expected 

Improvement 
per second plus

40 all Disabled

2 97.2 3 128.3
RUSBoos

t
23 324 .46 Select All

Grid
Search

Grid 
Div.= 10

all Disabled

3 98.1 2 72.0
AdaBoos

t 3 20 .10
Select All Random 

Search

Expected 
Improvement 

per second plus
40 all Disabled

4 96.3 4 80.8
RUSBoos

t
14 12 .98 Select All Bayesian

Expected 
Improvement 

per second plus
40 1. Model No Disabled

5 98.1 2 105.9
RUSBoos

t
25 65 .85 Select All Bayesian

Expected 
Improvement 

per second plus
40

1. Model No
2. Total length of 

Diagrid 
Members

3. Max Normal 
Force

Disabled

6 85.2 16 129.4
RUSBoos

t
106 124 0.07 Select All Bayesian

Expected 
Improvement 

per second plus
40

1. Model No
2. Total length of 

Diagrid 
Members

3. Max Normal 
Force

95% Variance
1 kept off

7 88 13 99.2 Bag 66 61 1 Bayesian
Expected 

Improvement 
per second plus

40 all
95% Variance

1 kept off
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Optimizable Naïve Bayes

Distribution names Kernel type:

Gaussian
Kernel

Gaussian
Box

Epanechnikov
Triangle

Hyperparameter search range
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Model 
No.

Accuracy
Total 

Misclassification
cost

Training
time

Distribution 
names

Kernel 
type:

Support Optimizer
Acquisition

Function
Iteration Feature selection PCA

1 90.7 10 85.5 Kernel Gaussian unbounded Bayesian

Expected 
Improvement 

per second 
plus

30 all Disabled

2 92.6 8 109.7 Kernel Box Positive Bayesian

Expected 
Improvement 

per second 
plus

30 all Disabled

4 92.6 8 13.7 Kernel Box Positive
Grid

Search
Grid 

Div.= 10
all Disabled

5 82.4 19 36.6 Gaussian Triangle Positive Bayesian

Expected 
Improvement 

per second 
plus

30 all
95% Variance

1 kept off

7 91.7 9 66.3 Kernel Gaussian unbounded Bayesian

Expected 
Improvement 

per second 
plus

30

1. Model No
2. Total length of 

Diagrid 
Members

3. Max Normal 
Force

Disabled

Optimizable Naïve Bayes
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Optimizable Discriminant

Discriminant type:

Linear
Quadratic

Diagonal Linear
Diagonal Quadratic

Hyperparameter search range
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Model 
No.

Accuracy
Total 

Misclassification
cost

Training
time

Discriminant 
type:

Optimizer
Acquisition

Function
Iteration Feature selection PCA

1 93.5 7 47.8 Linear Bayesian
Expected 

Improvement per 
second plus

40 all Disabled

2 85.2 16 46.8
Diagonal 
Quadratic Bayesian

Expected 
Improvement per 

second plus
40 all

95% Variance
1 kept off

3 94.4 6 45.3 Linear Bayesian
Expected 

Improvement per 
second plus

40 1. Model No Disabled

4 94.4 5 47.9 Linear Bayesian
Expected 

Improvement per 
second plus

40

1. Model No
2. Total length of Diagrid 

Members
3. Max Normal Force

Disabled

5 85.2 16 48.7
Diagonal 
Quadratic

Bayesian
Expected 

Improvement per 
second plus

40

1. Model No
2. Total length of Diagrid 

Members
3. Max Normal Force

95% Variance
1 kept off

Optimizable Discriminant
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Conclusion

It was proved that supervised machine learning can be
successfully applied to this case study. Moreover, between six
classification algorithms, each of them provided some
advantages and disadvantages. Namely, the ensemble and the
decision tree classifier algorithm could achieve the best results.



Thank you
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